In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
针对传统波达方向(Direction of Arrival,DOA)估计方法在低信噪比、少快拍数条件下表现性能差甚至失效的问题,提出了一种基于重构频域协方差矩阵的波达方位估计方法。该方法根据转化的频域信号进行共轭反向修正实现对噪声的抑制,构造出...针对传统波达方向(Direction of Arrival,DOA)估计方法在低信噪比、少快拍数条件下表现性能差甚至失效的问题,提出了一种基于重构频域协方差矩阵的波达方位估计方法。该方法根据转化的频域信号进行共轭反向修正实现对噪声的抑制,构造出了新的频域协方差矩阵,利用平均噪声子空间建立空间谱估计函数,通过谱峰搜索估计出信源的方位角。经仿真对比分析,所提改进方法可以识别多个相干信号,并且在低信噪比、少快拍数条件下仍然获得较好的方位估计性能,估计误差较传统算法降低2%~25%。展开更多
在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel ...在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel Estimation and Equalization,SFICEE)方法。该方法通过载波间的空频正交性进行各收发阵元对的信道估计,并通过空频均衡获得符号初始估计,迭代更新信道估计,而后通过符号后验软信息反馈进行迭代空频软均衡。仿真结果表明,当误码率为10^(-3)时,文中所提出的SFICEE方法经过二次迭代与STBC方法相比具有4.8 d B的性能增益,相对于SFBC方法有2.8 d B的性能提升。当输入信噪比相同时,文中所提出方法的星座图更加收敛,可以更好地降低水下通信系统的误码率。展开更多
在多输入多输出-正交频分复用(MIMO-OFDM)系统中,通过联合估计信道矩阵和干扰协方差矩阵(ICM)的方法来抑制同信道干扰.首先,利用最小二乘法和残差估计方法获取信道矩阵和ICM的初始估计值;然后,基于Cholesky分解方法对ICM的估计值进行改...在多输入多输出-正交频分复用(MIMO-OFDM)系统中,通过联合估计信道矩阵和干扰协方差矩阵(ICM)的方法来抑制同信道干扰.首先,利用最小二乘法和残差估计方法获取信道矩阵和ICM的初始估计值;然后,基于Cholesky分解方法对ICM的估计值进行改善,并利用改善后的ICM估计值对信道矩阵估计值进行更新.该方法充分利用了时域和频域中的所有可用信息,提高了信道估计精度,较好地抑制了同信道干扰.仿真结果表明:与其他可实现的非迭代方法相比,该方法所得的信道频率响应估计均方误差性能增益高于2 d B;信干噪比(SINR)越大,比特误码率性能的改善程度越好,并且随着天线数的增多,性能增益也增大.展开更多
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu...In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.展开更多
相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研...相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。展开更多
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
基金supported by the National Natural Science Foundation of China(61171180)the Fundamental Research Funds for the Cen tral Universities(HIT.MKSTISP.2016 13HIT.MKSTISP.2016 26)
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.
文摘针对传统波达方向(Direction of Arrival,DOA)估计方法在低信噪比、少快拍数条件下表现性能差甚至失效的问题,提出了一种基于重构频域协方差矩阵的波达方位估计方法。该方法根据转化的频域信号进行共轭反向修正实现对噪声的抑制,构造出了新的频域协方差矩阵,利用平均噪声子空间建立空间谱估计函数,通过谱峰搜索估计出信源的方位角。经仿真对比分析,所提改进方法可以识别多个相干信号,并且在低信噪比、少快拍数条件下仍然获得较好的方位估计性能,估计误差较传统算法降低2%~25%。
文摘在MIMO-OFDM水声通信系统中,由于信道间的相互干扰和水声信道严重时延扩展产生的频率选择性衰落,系统的通信误码率较高。针对这一问题,研究了空频编码的MIMO-OFDM通信,提出空频迭代信道估计与均衡(Spatial Frequency Iterative Channel Estimation and Equalization,SFICEE)方法。该方法通过载波间的空频正交性进行各收发阵元对的信道估计,并通过空频均衡获得符号初始估计,迭代更新信道估计,而后通过符号后验软信息反馈进行迭代空频软均衡。仿真结果表明,当误码率为10^(-3)时,文中所提出的SFICEE方法经过二次迭代与STBC方法相比具有4.8 d B的性能增益,相对于SFBC方法有2.8 d B的性能提升。当输入信噪比相同时,文中所提出方法的星座图更加收敛,可以更好地降低水下通信系统的误码率。
文摘在多输入多输出-正交频分复用(MIMO-OFDM)系统中,通过联合估计信道矩阵和干扰协方差矩阵(ICM)的方法来抑制同信道干扰.首先,利用最小二乘法和残差估计方法获取信道矩阵和ICM的初始估计值;然后,基于Cholesky分解方法对ICM的估计值进行改善,并利用改善后的ICM估计值对信道矩阵估计值进行更新.该方法充分利用了时域和频域中的所有可用信息,提高了信道估计精度,较好地抑制了同信道干扰.仿真结果表明:与其他可实现的非迭代方法相比,该方法所得的信道频率响应估计均方误差性能增益高于2 d B;信干噪比(SINR)越大,比特误码率性能的改善程度越好,并且随着天线数的增多,性能增益也增大.
文摘In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.
文摘相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。