In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the me...In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the measurement requirements of wide bandwidth and high accuracy spectral lines,we built a CTS system with an analysis bandwidth of 1 GHz and a frequency resolution of 100 kHz around the surface acoustic wave(SAW)chirp filter with a bandwidth of 1 GHz.In this paper,the relationship between the CTS nonlinear phase error shift model and the basic measurement parameters is studied,and the effect of CTS phase mismatch on the pulse compression waveform is analyzed by simulation.And the expander error optimization method is proposed for the problem that the large nonlinear error of the expander leads to the unbalanced response of the CTS system and the serious distortion of the compressed pulse waveform under large bandwidth.It is verified through simulation and experiment that the method is effective for reducing the root mean square error(RMSE)of the phase of the expander from 18.75°to 6.65°,reducing the in-band standard deviation of the CTS frequency resolution index from 8.43 kHz to 4.72 kHz,solving the problem of serious distortion of the compressed pulse waveform,and improving the uneven CTS response under large bandwidth.展开更多
On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation f...On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.展开更多
The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of ...The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.展开更多
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m...In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.展开更多
According to the existing method including testing the frequency and establishing the relationship between moisture content and frequency, a corresponding instrument was designed. In order to further improve the accur...According to the existing method including testing the frequency and establishing the relationship between moisture content and frequency, a corresponding instrument was designed. In order to further improve the accuracy and rapidity of the system, a new approach to describe the relationship between the measurement error and the temperature was proposed. The error band could be obtained and divided into several parts(based on the range of temperature) to indicate the error value that should compensate the grain moisture content for the changes in temperature. By calculating the error band at the maximum and the minimum operating temperatures, as well as by determining the error compensation value from the error band based on the measurement moisture content, the final effective result was derived.展开更多
The frictional properties of micro bearings have strong influence on the performance of the whole system because of tiny scale of micro-electromechanical system (MEMS). To develop micro bearings with low friction,it i...The frictional properties of micro bearings have strong influence on the performance of the whole system because of tiny scale of micro-electromechanical system (MEMS). To develop micro bearings with low friction,it is important to evaluate the friction behaviors on the micro bearing. The testing system and the principle to evaluate the tribological performance of micromachining work-pieces under the load of mill Newton scale is introduced in paper "A new approach to measure the friction coefficient of micro journal bearings" of Yao et al,. But as the tribological force is faint in micro scale, the measured force is influenced a lot by the testing error. As the equation of that of Yao’s paper is very sensitive to the measured force, the tested result is influenced remarkably by testing error. So it is hard to get precision result. To solve this problem, the test system with new compensation method is introduced to precisely evaluate tribological performance under mill scale. The new metrology method is developed by means of the error compensation from two sets of testing data. The data are the force collected respectively when the friction counterparts rotate in CW(clockwise) and CCW(counter-clockwise) direction. So we deduce the equation of friction coefficient respctively on the condition of journal running in CCW and CW direction. As condition of measuring those two friciton coefficients are alike except the running direction of journal, and then the friction coefficient should be the same because this difference of direction has no influence on the fricition coefficients. Considering this, we unite the both equation, make the data measured in different subtract each other in the equation, and then a new equation can be gotten. This new equation enhances the metrology precision of friction coefficient theoretically thanks to the counteracting of error values in the equation. Using this method we testing the friction of high speed steel journal with hard alloy bearing. The result shows the new compensation method has better precision and repetition than CW and CCW method thanks to the error resistance.展开更多
In recent years, ground-based micro-deformation monitoring radar has attracted much attention due to its excellent monitoring capability. By controlling the repeated campaigns of the radar antenna on a fixed track, gr...In recent years, ground-based micro-deformation monitoring radar has attracted much attention due to its excellent monitoring capability. By controlling the repeated campaigns of the radar antenna on a fixed track, ground-based micro-deformation monitoring radar can accomplish repeat-pass interferometry without a space baseline and thus obtain highprecision deformation data of a large scene at one time. However, it is difficult to guarantee absolute stable installation position in every campaign. If the installation position is unstable, the stability of the radar track will be affected randomly, resulting in time-varying baseline error. In this study, a correction method for this error is developed by analyzing the error distribution law while the spatial baseline is unknown. In practice, the error data are first identified by frequency components, then the data of each one-dimensional array(in azimuth direction or range direction) are grouped based on numerical distribution period, and finally the error is corrected by the nonlinear model established with each group.This method is verified with measured data from a slope in southern China, and the results show that the method can effectively correct the time-varying baseline error caused by rail instability and effectively improve the monitoring data accuracy of groundbased micro-deformation radar in short term and long term.展开更多
Some methods which use an optical tracker(OT) as a standard reference of electromagnetic tracker(EMT) were proposed in order to compensate the output error of electromagnetic tracker. Usually,they use a magneto-optic ...Some methods which use an optical tracker(OT) as a standard reference of electromagnetic tracker(EMT) were proposed in order to compensate the output error of electromagnetic tracker. Usually,they use a magneto-optic tool to collect the outputs of OT and EMT simultaneously,and then compare the output of OT with that of EMT to compensate the error of EMT. Although the outputs of EMT and OT can be matched each other by using a time stamp which denotes when the acquirement command is sent,but the accuracy will decrease if the tool moves faster for the errors of the time stamp itself. A rapid method for compensating EMT output error is proposed. A particular scan mode of the magneto-optic tool is designed for collecting EMT and OT outputs,and a data registration method is proposed to match the outputs of EMT and OT. The simulated results show that the output error of EMT can be decreased efficiently and the accuracy of the compensation can be improved by about 15% compared with that of the existing methods.展开更多
To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of t...To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of the ellipses are extracted,and the real concentric circle center projection equation is established by exploiting the cross ratio invariance of the collinear points.Subsequently,since the infinite lines passing through the centers of the marks are parallel,the other center projection coordinates are expressed as the solution problem of linear equations.The problem of projection deviation caused by using the center of the ellipse as the real circle center projection is addressed,and the results are utilized as the true image points to achieve the high precision camera calibration.As demonstrated by the simulations and practical experiments,the proposed method performs a better location and calibration performance by achieving the actual center projection of circular marks.The relevant results confirm the precision and robustness of the proposed approach.展开更多
Volumetric error modeling method is an important te ch nique for enhancement the accuracy of CNC machine tools by error compensation. I n the research field, the main question is how to find an universal kinematics m ...Volumetric error modeling method is an important te ch nique for enhancement the accuracy of CNC machine tools by error compensation. I n the research field, the main question is how to find an universal kinematics m odeling method for different kinds of NC machine tools. Multi-body system theor y is always used to solve the dynamics problem of complex physical system. But t ill now, the error factors that always exist in practice system is still not con sidered. In this paper, the accuracy kinematics of MBS (multi-body system) are developed by adding the movement error items and the positioning error items for every couple of adjacent bodies. After make an analysis for different kinds of NC machine tools we can find that NC machine tools can be looked as a kind of sp ecial MBS. It’s main construction only contains two movement branch. the one is from base part to workpiece and the other is from base part to cutter. So an u niversal volumetric error modeling method and the error analysis method for NC m achine tools can be built in this paper based on MBS theory. The essential condi tion for precision machining is derived through mathematics equations and the co ncept of ICCP (inverse changed cutter path ) and ICNI (inverse changed NC instru ction ) are presented in this paper. The numerical solution methods for ICCP and ICNI are also given in this paper which can be directly used to enhance the mac hining accuracy of NC machine tools. In order to verifying the above works, the double frequency laser interface detecting instrument of RENISHAW is used to mea sure the error parameters of the MAKINO 3-axis NC machine tools and the softwar es are developed using C++ developing language to simulate the cutte r trail under different kind conditions in the computer. Latterly the standard w ork parts are selected to be machined on the MAKINO 3-axis NC machine tools bef ore and after use the above mentioned error compensation method respectively. Th e simulation and experiment results show that the volumetric error modeling meth od is effective and the machining accuracy of CNC machine tools can be improved more than 60% after using the compensation method presented in this paper.展开更多
This paper presents an integration methodology for ma chining and measuring processes using OMM (On-Machine Measurement) technology b ased on CAD/CAM/CAI integration concept. OMM uses a CNC machining center as a me as...This paper presents an integration methodology for ma chining and measuring processes using OMM (On-Machine Measurement) technology b ased on CAD/CAM/CAI integration concept. OMM uses a CNC machining center as a me asuring station by changing the tools into measuring probes such as touch-type, laser and vision. Although the measurement accuracy is not good compared to tha t of the CMM (Coordinate Measuring Machine), there are distinctive advantages us ing OMM in real situation. In this paper, two topics are handled to show the eff ectiveness of the machining and measuring process integration: (1) inspection pl anning strategy for sculptured surface machining and (2) tool path compensation for profile milling process. For the first topic, as a first step, effective mea suring point locations are determined to obtain optimum results for given sampli ng numbers. Two measuring point selection methods are suggested based on the CAD /CAM/CAI integration concept: (1) by the prediction of cutting errors and (2) by considering cutter contact points to avoid the measurement errors caused by cus ps. As a next step, the TSP (Traveling Salesman Problem) algorithm is applied to minimize the probe moving distance. Appropriate simulations and experiments are performed to verify the proposed inspection planning strategy, and the results are analyzed. For the second topic, a methodology for profile milling error comp ensation is presented by using an ANN (Artificial Neural Network) model trained by the inspection database of OMM system. First, geometric and thermal errors of the machining center are compensated using a closed-loop configuration for the improvement of machining and inspection accuracy. The probing errors are also t aken into account. Then, a specimen workpiece is machined and then the machi ning surface error distribution is measured on the machine using touch-type pro be. In order to efficiently analyze the machining errors, two characteristic err or parameters (W err and D err) are defined. Subsequently, these param eters are modeled by applying the RFB (Radial Basis Function) network approach a s an ANN model. Based on the RBF network model, the tool paths are compensated i n order to effectively reduce the errors by employing an iterative algorithm. In order to validate the approaches proposed in this paper, a concrete case of the machining process is taken into account and about 90% of machining error reduction is successfully accomplished through the proposed approaches.展开更多
文摘In the field of deep space exploration,the rapid development of terahertz spectrometer has put forward higher requirements to the back-end chirp transform spectrometer(CTS)system.In order to simultaneously meet the measurement requirements of wide bandwidth and high accuracy spectral lines,we built a CTS system with an analysis bandwidth of 1 GHz and a frequency resolution of 100 kHz around the surface acoustic wave(SAW)chirp filter with a bandwidth of 1 GHz.In this paper,the relationship between the CTS nonlinear phase error shift model and the basic measurement parameters is studied,and the effect of CTS phase mismatch on the pulse compression waveform is analyzed by simulation.And the expander error optimization method is proposed for the problem that the large nonlinear error of the expander leads to the unbalanced response of the CTS system and the serious distortion of the compressed pulse waveform under large bandwidth.It is verified through simulation and experiment that the method is effective for reducing the root mean square error(RMSE)of the phase of the expander from 18.75°to 6.65°,reducing the in-band standard deviation of the CTS frequency resolution index from 8.43 kHz to 4.72 kHz,solving the problem of serious distortion of the compressed pulse waveform,and improving the uneven CTS response under large bandwidth.
基金Projects(51775445,52175435)supported by the National Natural Science Foundation of ChinaProject(CX2023051)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.
文摘The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.
基金Projects(2012ZX04010-011,2009ZX02037-02) supported by the Key National Science and Technology Project of China
文摘In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.
基金Supported by the National Natural Science Foundation of China(51275145)
文摘According to the existing method including testing the frequency and establishing the relationship between moisture content and frequency, a corresponding instrument was designed. In order to further improve the accuracy and rapidity of the system, a new approach to describe the relationship between the measurement error and the temperature was proposed. The error band could be obtained and divided into several parts(based on the range of temperature) to indicate the error value that should compensate the grain moisture content for the changes in temperature. By calculating the error band at the maximum and the minimum operating temperatures, as well as by determining the error compensation value from the error band based on the measurement moisture content, the final effective result was derived.
文摘The frictional properties of micro bearings have strong influence on the performance of the whole system because of tiny scale of micro-electromechanical system (MEMS). To develop micro bearings with low friction,it is important to evaluate the friction behaviors on the micro bearing. The testing system and the principle to evaluate the tribological performance of micromachining work-pieces under the load of mill Newton scale is introduced in paper "A new approach to measure the friction coefficient of micro journal bearings" of Yao et al,. But as the tribological force is faint in micro scale, the measured force is influenced a lot by the testing error. As the equation of that of Yao’s paper is very sensitive to the measured force, the tested result is influenced remarkably by testing error. So it is hard to get precision result. To solve this problem, the test system with new compensation method is introduced to precisely evaluate tribological performance under mill scale. The new metrology method is developed by means of the error compensation from two sets of testing data. The data are the force collected respectively when the friction counterparts rotate in CW(clockwise) and CCW(counter-clockwise) direction. So we deduce the equation of friction coefficient respctively on the condition of journal running in CCW and CW direction. As condition of measuring those two friciton coefficients are alike except the running direction of journal, and then the friction coefficient should be the same because this difference of direction has no influence on the fricition coefficients. Considering this, we unite the both equation, make the data measured in different subtract each other in the equation, and then a new equation can be gotten. This new equation enhances the metrology precision of friction coefficient theoretically thanks to the counteracting of error values in the equation. Using this method we testing the friction of high speed steel journal with hard alloy bearing. The result shows the new compensation method has better precision and repetition than CW and CCW method thanks to the error resistance.
基金supported by the National Key R&D Program of China (2018YFC1508502)the National Natural Science Foundation of China (41601569,61661043,61631011)the Science and Technology Innovation Guidance Project of Inner Mongolia Autonomous Region (2019GG139,KCBJ2017,KCBJ 2018014,2019ZD022)。
文摘In recent years, ground-based micro-deformation monitoring radar has attracted much attention due to its excellent monitoring capability. By controlling the repeated campaigns of the radar antenna on a fixed track, ground-based micro-deformation monitoring radar can accomplish repeat-pass interferometry without a space baseline and thus obtain highprecision deformation data of a large scene at one time. However, it is difficult to guarantee absolute stable installation position in every campaign. If the installation position is unstable, the stability of the radar track will be affected randomly, resulting in time-varying baseline error. In this study, a correction method for this error is developed by analyzing the error distribution law while the spatial baseline is unknown. In practice, the error data are first identified by frequency components, then the data of each one-dimensional array(in azimuth direction or range direction) are grouped based on numerical distribution period, and finally the error is corrected by the nonlinear model established with each group.This method is verified with measured data from a slope in southern China, and the results show that the method can effectively correct the time-varying baseline error caused by rail instability and effectively improve the monitoring data accuracy of groundbased micro-deformation radar in short term and long term.
文摘Some methods which use an optical tracker(OT) as a standard reference of electromagnetic tracker(EMT) were proposed in order to compensate the output error of electromagnetic tracker. Usually,they use a magneto-optic tool to collect the outputs of OT and EMT simultaneously,and then compare the output of OT with that of EMT to compensate the error of EMT. Although the outputs of EMT and OT can be matched each other by using a time stamp which denotes when the acquirement command is sent,but the accuracy will decrease if the tool moves faster for the errors of the time stamp itself. A rapid method for compensating EMT output error is proposed. A particular scan mode of the magneto-optic tool is designed for collecting EMT and OT outputs,and a data registration method is proposed to match the outputs of EMT and OT. The simulated results show that the output error of EMT can be decreased efficiently and the accuracy of the compensation can be improved by about 15% compared with that of the existing methods.
基金supported by the Aerospace Science and Technology Joint Fund(6141B061505)the National Natural Science Foundation of China(61473100).
文摘To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of the ellipses are extracted,and the real concentric circle center projection equation is established by exploiting the cross ratio invariance of the collinear points.Subsequently,since the infinite lines passing through the centers of the marks are parallel,the other center projection coordinates are expressed as the solution problem of linear equations.The problem of projection deviation caused by using the center of the ellipse as the real circle center projection is addressed,and the results are utilized as the true image points to achieve the high precision camera calibration.As demonstrated by the simulations and practical experiments,the proposed method performs a better location and calibration performance by achieving the actual center projection of circular marks.The relevant results confirm the precision and robustness of the proposed approach.
基金supported by the National Nature Science Foundation of China(61304223)the Aeronautical Science Foundation of China(2016ZA52009)the Research Fund for the Doctoral Program of Higher Education of China(20123218120015)
文摘Volumetric error modeling method is an important te ch nique for enhancement the accuracy of CNC machine tools by error compensation. I n the research field, the main question is how to find an universal kinematics m odeling method for different kinds of NC machine tools. Multi-body system theor y is always used to solve the dynamics problem of complex physical system. But t ill now, the error factors that always exist in practice system is still not con sidered. In this paper, the accuracy kinematics of MBS (multi-body system) are developed by adding the movement error items and the positioning error items for every couple of adjacent bodies. After make an analysis for different kinds of NC machine tools we can find that NC machine tools can be looked as a kind of sp ecial MBS. It’s main construction only contains two movement branch. the one is from base part to workpiece and the other is from base part to cutter. So an u niversal volumetric error modeling method and the error analysis method for NC m achine tools can be built in this paper based on MBS theory. The essential condi tion for precision machining is derived through mathematics equations and the co ncept of ICCP (inverse changed cutter path ) and ICNI (inverse changed NC instru ction ) are presented in this paper. The numerical solution methods for ICCP and ICNI are also given in this paper which can be directly used to enhance the mac hining accuracy of NC machine tools. In order to verifying the above works, the double frequency laser interface detecting instrument of RENISHAW is used to mea sure the error parameters of the MAKINO 3-axis NC machine tools and the softwar es are developed using C++ developing language to simulate the cutte r trail under different kind conditions in the computer. Latterly the standard w ork parts are selected to be machined on the MAKINO 3-axis NC machine tools bef ore and after use the above mentioned error compensation method respectively. Th e simulation and experiment results show that the volumetric error modeling meth od is effective and the machining accuracy of CNC machine tools can be improved more than 60% after using the compensation method presented in this paper.
文摘This paper presents an integration methodology for ma chining and measuring processes using OMM (On-Machine Measurement) technology b ased on CAD/CAM/CAI integration concept. OMM uses a CNC machining center as a me asuring station by changing the tools into measuring probes such as touch-type, laser and vision. Although the measurement accuracy is not good compared to tha t of the CMM (Coordinate Measuring Machine), there are distinctive advantages us ing OMM in real situation. In this paper, two topics are handled to show the eff ectiveness of the machining and measuring process integration: (1) inspection pl anning strategy for sculptured surface machining and (2) tool path compensation for profile milling process. For the first topic, as a first step, effective mea suring point locations are determined to obtain optimum results for given sampli ng numbers. Two measuring point selection methods are suggested based on the CAD /CAM/CAI integration concept: (1) by the prediction of cutting errors and (2) by considering cutter contact points to avoid the measurement errors caused by cus ps. As a next step, the TSP (Traveling Salesman Problem) algorithm is applied to minimize the probe moving distance. Appropriate simulations and experiments are performed to verify the proposed inspection planning strategy, and the results are analyzed. For the second topic, a methodology for profile milling error comp ensation is presented by using an ANN (Artificial Neural Network) model trained by the inspection database of OMM system. First, geometric and thermal errors of the machining center are compensated using a closed-loop configuration for the improvement of machining and inspection accuracy. The probing errors are also t aken into account. Then, a specimen workpiece is machined and then the machi ning surface error distribution is measured on the machine using touch-type pro be. In order to efficiently analyze the machining errors, two characteristic err or parameters (W err and D err) are defined. Subsequently, these param eters are modeled by applying the RFB (Radial Basis Function) network approach a s an ANN model. Based on the RBF network model, the tool paths are compensated i n order to effectively reduce the errors by employing an iterative algorithm. In order to validate the approaches proposed in this paper, a concrete case of the machining process is taken into account and about 90% of machining error reduction is successfully accomplished through the proposed approaches.