Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in cu...Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.展开更多
In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution de...In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.展开更多
An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr...An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.展开更多
The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms,which seriously damages the long-term stability of the spin-exchange relaxation-free(SERF)comagnetometer.T...The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms,which seriously damages the long-term stability of the spin-exchange relaxation-free(SERF)comagnetometer.To address this problem,we propose a novel method for suppressing the cell temperature error by manipulating the probe laser frequency.A temperature coefficient model of the SERF comagnetometer is established based on the steady-state response,which indicates that the comagnetometer can be tuned to a working point where the output signal is insensitive to the cell temperature fluctuation,and the working point is determined by the relaxation rate of the alkali metal atoms.The method is verified in a K-Rb-^(21)Ne comagnetometer,and the experimental results are consistent with the theory.The theory and method presented here lay a foundation for the practical applications of the SERF comagnetometer.展开更多
In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy...In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key R&D Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.
文摘In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.
基金Project supported by the National Natural Science Foundation of China (Grant No.51821005)。
文摘An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103024 and 61925301)in part by the Aeronautical Science Foundation(Grant No.2023Z073051012)。
文摘The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms,which seriously damages the long-term stability of the spin-exchange relaxation-free(SERF)comagnetometer.To address this problem,we propose a novel method for suppressing the cell temperature error by manipulating the probe laser frequency.A temperature coefficient model of the SERF comagnetometer is established based on the steady-state response,which indicates that the comagnetometer can be tuned to a working point where the output signal is insensitive to the cell temperature fluctuation,and the working point is determined by the relaxation rate of the alkali metal atoms.The method is verified in a K-Rb-^(21)Ne comagnetometer,and the experimental results are consistent with the theory.The theory and method presented here lay a foundation for the practical applications of the SERF comagnetometer.
文摘In this paper,the fixed-time time-varying formation of heterogeneous multi-agent systems(MASs) based on tracking error observer under denial-of-service(DoS) attacks is investigated.Firstly,the dynamic pinning strategy is used to reconstruct the communication channel for the system that suffers from DoS attacks to prevent the discontinuous transmission information of the communication network from affecting MASs formation.Then,considering that the leader state is not available to each follower under DoS attacks,a fixed-time distributed observer without velocity information is constructed to estimate the tracking error between followers and the leader.Finally,adaptive radial basis function neural network(RBFNN) is used to approximate the unknown ensemble disturbances in the system,and the fixed-time time-varying formation scheme is designed with the constructed observer.The effectiveness of the proposed control algorithm is demonstrated by the numerical simulation.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.