Ensemble simulations, which use multiple short independent trajectories from dispersive initial conformations, rather than a single long trajectory as used in traditional simulations, are expected to sample complex sy...Ensemble simulations, which use multiple short independent trajectories from dispersive initial conformations, rather than a single long trajectory as used in traditional simulations, are expected to sample complex systems such as biomolecules much more efficiently. The re-weighted ensemble dynamics(RED) is designed to combine these short trajectories to reconstruct the global equilibrium distribution. In the RED, a number of conformational functions, named as basis functions,are applied to relate these trajectories to each other, then a detailed-balance-based linear equation is built, whose solution provides the weights of these trajectories in equilibrium distribution. Thus, the sufficient and efficient selection of basis functions is critical to the practical application of RED. Here, we review and present a few possible ways to generally construct basis functions for applying the RED in complex molecular systems. Especially, for systems with less priori knowledge, we could generally use the root mean squared deviation(RMSD) among conformations to split the whole conformational space into a set of cells, then use the RMSD-based-cell functions as basis functions. We demonstrate the application of the RED in typical systems, including a two-dimensional toy model, the lattice Potts model, and a short peptide system. The results indicate that the RED with the constructions of basis functions not only more efficiently sample the complex systems, but also provide a general way to understand the metastable structure of conformational space.展开更多
This paper studies the bulk-arrival M-x/G/1 queue with single server vacation. By introducing the server busy period and using the Laplace transform, the recursion expression of the Laplace transform of the transient ...This paper studies the bulk-arrival M-x/G/1 queue with single server vacation. By introducing the server busy period and using the Laplace transform, the recursion expression of the Laplace transform of the transient queue-length distribution is derived. Furthermore, the distribution and stochastic decomposition result of the queue length at a random point in equilibrium are obtained. Especially some results for the single-arrival M/G/1 queue with single server vacation and bulk-arrival M-x/G/1 queue but with no server vacation can be derived directly by the results obtained in this paper.展开更多
Decomposition of carbon tetrachloride was studied theoretically in the most commonly used thermal plasma atmosphere such as H2, N2, O2 and water steam. A code developed by the National Aeronautics and Space Administra...Decomposition of carbon tetrachloride was studied theoretically in the most commonly used thermal plasma atmosphere such as H2, N2, O2 and water steam. A code developed by the National Aeronautics and Space Administration (NASA) was adopted to calculate the chemical equilibrium distribution and energy consumption of the decomposition of CC;4 in the H2, N2, O2 and water steam atmosphere thermal plasma respectively, with a temperature range of 500 K to 5000 K. In the neutral condition (H2, N2, atmosphere) formation of solid carbon was observed and in the oxygen-atmosphere (O2 and water steam) solid carbon formation disappeared through controlling the ratio of C/O. This indicates that the formation of polycyclic aromatic hydrocarbons (PAHs) is impossible theoretically. The energy consumption in the N2 atmosphere was much higher than that in the H2, O2 and water steam atmosphere at 1500 K.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11175250)
文摘Ensemble simulations, which use multiple short independent trajectories from dispersive initial conformations, rather than a single long trajectory as used in traditional simulations, are expected to sample complex systems such as biomolecules much more efficiently. The re-weighted ensemble dynamics(RED) is designed to combine these short trajectories to reconstruct the global equilibrium distribution. In the RED, a number of conformational functions, named as basis functions,are applied to relate these trajectories to each other, then a detailed-balance-based linear equation is built, whose solution provides the weights of these trajectories in equilibrium distribution. Thus, the sufficient and efficient selection of basis functions is critical to the practical application of RED. Here, we review and present a few possible ways to generally construct basis functions for applying the RED in complex molecular systems. Especially, for systems with less priori knowledge, we could generally use the root mean squared deviation(RMSD) among conformations to split the whole conformational space into a set of cells, then use the RMSD-based-cell functions as basis functions. We demonstrate the application of the RED in typical systems, including a two-dimensional toy model, the lattice Potts model, and a short peptide system. The results indicate that the RED with the constructions of basis functions not only more efficiently sample the complex systems, but also provide a general way to understand the metastable structure of conformational space.
基金the National Outstanding Youth Science Foundation !(79725002) the Youth Science Foundation of UEST.
文摘This paper studies the bulk-arrival M-x/G/1 queue with single server vacation. By introducing the server busy period and using the Laplace transform, the recursion expression of the Laplace transform of the transient queue-length distribution is derived. Furthermore, the distribution and stochastic decomposition result of the queue length at a random point in equilibrium are obtained. Especially some results for the single-arrival M/G/1 queue with single server vacation and bulk-arrival M-x/G/1 queue but with no server vacation can be derived directly by the results obtained in this paper.
文摘Decomposition of carbon tetrachloride was studied theoretically in the most commonly used thermal plasma atmosphere such as H2, N2, O2 and water steam. A code developed by the National Aeronautics and Space Administration (NASA) was adopted to calculate the chemical equilibrium distribution and energy consumption of the decomposition of CC;4 in the H2, N2, O2 and water steam atmosphere thermal plasma respectively, with a temperature range of 500 K to 5000 K. In the neutral condition (H2, N2, atmosphere) formation of solid carbon was observed and in the oxygen-atmosphere (O2 and water steam) solid carbon formation disappeared through controlling the ratio of C/O. This indicates that the formation of polycyclic aromatic hydrocarbons (PAHs) is impossible theoretically. The energy consumption in the N2 atmosphere was much higher than that in the H2, O2 and water steam atmosphere at 1500 K.