In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 ...In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
Analyzed from the viewpoint of women's equality,as key factors,equality of thought,equality of rights and equality of personal dignity are also the core directions pursued by American liberalistic literature. The ...Analyzed from the viewpoint of women's equality,as key factors,equality of thought,equality of rights and equality of personal dignity are also the core directions pursued by American liberalistic literature. The prominence of intrinsic meaning and value exerted by equality of thought and equality of personal dignity on free development goals of American society can ensure further enhancement of the equality of women's social rights and an increasingly rising new- level of social democratic development,expressing the features of the society and times embodied by American literalistic literary thought.展开更多
为解决电池在工作时出现的能量不一致的问题,以模糊逻辑控制算法为核心,建立以电池荷电状态(state of charge,SOC)差异和电池温度差为根据,可自适应选择均衡模式和开关导通占空比的均衡控制策略。并设计了一种基于环形电感和三绕组变压...为解决电池在工作时出现的能量不一致的问题,以模糊逻辑控制算法为核心,建立以电池荷电状态(state of charge,SOC)差异和电池温度差为根据,可自适应选择均衡模式和开关导通占空比的均衡控制策略。并设计了一种基于环形电感和三绕组变压器的双层均衡拓扑结构,该拓扑拥有多个均衡模式,满足策略需求。使用MATLAB Simulink软件进行模型搭建并仿真,仿真结果表明该均衡方法能够有效缩短均衡时长,缓解电池间的不一致性问题,对比同类型多均衡模式的均衡方法,静置、充电、放电所需均衡时间分别缩短69.78%、39.81%和44.15%,同时有效降低了均衡时的电池温度。展开更多
水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术...水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术已在水声通信中得到广泛应用,但其性能仍受限于信道状态估计的准确性。正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术通过将数据转换到时延-多普勒域内传输,能够有效地应对水声信道中的多径效应和多普勒频移,提高通信系统的性能和可靠性。综述了OTFS在水声通信中的关键处理技术,涵盖信道估计、信道均衡及多址接入技术三个核心方面,并从天线拓展、机器学习融合及同步创新等方面探讨了未来发展趋势,同时详细分析了复杂信道环境下的信号检测、计算复杂度与实时性平衡、参数估计准确性及水下环境对数据可靠性的影响面临的技术挑战。展开更多
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by the International Cooperative Scientific Research Platform of SUES,China。
文摘In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
文摘Analyzed from the viewpoint of women's equality,as key factors,equality of thought,equality of rights and equality of personal dignity are also the core directions pursued by American liberalistic literature. The prominence of intrinsic meaning and value exerted by equality of thought and equality of personal dignity on free development goals of American society can ensure further enhancement of the equality of women's social rights and an increasingly rising new- level of social democratic development,expressing the features of the society and times embodied by American literalistic literary thought.
文摘为解决电池在工作时出现的能量不一致的问题,以模糊逻辑控制算法为核心,建立以电池荷电状态(state of charge,SOC)差异和电池温度差为根据,可自适应选择均衡模式和开关导通占空比的均衡控制策略。并设计了一种基于环形电感和三绕组变压器的双层均衡拓扑结构,该拓扑拥有多个均衡模式,满足策略需求。使用MATLAB Simulink软件进行模型搭建并仿真,仿真结果表明该均衡方法能够有效缩短均衡时长,缓解电池间的不一致性问题,对比同类型多均衡模式的均衡方法,静置、充电、放电所需均衡时间分别缩短69.78%、39.81%和44.15%,同时有效降低了均衡时的电池温度。
文摘水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术已在水声通信中得到广泛应用,但其性能仍受限于信道状态估计的准确性。正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术通过将数据转换到时延-多普勒域内传输,能够有效地应对水声信道中的多径效应和多普勒频移,提高通信系统的性能和可靠性。综述了OTFS在水声通信中的关键处理技术,涵盖信道估计、信道均衡及多址接入技术三个核心方面,并从天线拓展、机器学习融合及同步创新等方面探讨了未来发展趋势,同时详细分析了复杂信道环境下的信号检测、计算复杂度与实时性平衡、参数估计准确性及水下环境对数据可靠性的影响面临的技术挑战。
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。