A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications.We investigated,the toughening effects of phenolphthalein-based cardo poly(ether sulfo...A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications.We investigated,the toughening effects of phenolphthalein-based cardo poly(ether sulfone)(PES-C)on E51/DETDA epoxy and its carbon fiber composites(CFCs).Scanning electron microscopy showed that the phase structures of PES-C/epoxy blends change from island(of dispersed phase)structures to bi-continuous structures(of the matrix)as the PES-C content increased,which is associated with reaction-induced phase separation.After adding 15 phr PES-C,the glass transition temperature(T_(g))of the blends increased by 51.5℃,and the flexural strength,impact strength and fracture toughness of the blends were improved by 41.1%,186.2%and 42.7%,respectively.These improvements could be attributed to the phase separation structure of the PES-C/epoxy sys-tem.A PES-C film was used to improve the mode-II fracture toughness(G_(IIC))of CFCs.The G_(IIC) value of the 7μm PES-C film toughened laminate was improved by 80.3%compared to that of the control laminate.The increase in G_(IIC) was attributed to cohesive failure and plastic deformation in the interleaving region.展开更多
Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and...Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.展开更多
Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-...Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.展开更多
A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 a...A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 and EPA6N at temperatures of 225 and 235 ℃ were investigated.The results of transmission electron microscopy(TEM) and atomic force microscopy(AFM) indicate that the silica particles are well dispersed in the polyamide 6 matrix on about 30 nm in diameter,which demonstrates that this method can effectively avoid agglomeration of the inorganic particles.The rheological results suggest that pure PA6 shows Newtonian behavior.However,the novel EPA6N exhibits a solid-like rheological behavior,which is due to the small size,large surface of silica particles and the stronger polyamide 6-silica chemical bond formed through the reactions of epoxy resins with end groups of PA6 molecular chains.The EPA6N also exhibits higher melt viscosity,storage modulus and loss modulus than those of pure PA6.展开更多
Curing behavior of a model epoxies system (E-54/AG-80) with DDS as hardener was studied in this paper. Round disk compression mode DMA was executed to study the gel behaviors at different temperatures to determine the...Curing behavior of a model epoxies system (E-54/AG-80) with DDS as hardener was studied in this paper. Round disk compression mode DMA was executed to study the gel behaviors at different temperatures to determine the relationship between gel-time (t_ gel) and temperature. The cure kinetics was studied by dynamic DSC analysis. Parameters were obtained for establishing a phenomenological cure reaction model. The relationship between glass transition temperature (T_g) and cure degree (α) was also analyzed by both isothermal and dynamic DSC method based on DiBenedetto equation, which gave a mathematical description of T_g as a function of both time and temperature. Consequently, characteristic temperatures such as T_ g0, gelT_ g and T_ g∞ were determined. Finally, the Time-Temperature-Transition (TTT) diagram was designed based on the data and equations.展开更多
文摘A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications.We investigated,the toughening effects of phenolphthalein-based cardo poly(ether sulfone)(PES-C)on E51/DETDA epoxy and its carbon fiber composites(CFCs).Scanning electron microscopy showed that the phase structures of PES-C/epoxy blends change from island(of dispersed phase)structures to bi-continuous structures(of the matrix)as the PES-C content increased,which is associated with reaction-induced phase separation.After adding 15 phr PES-C,the glass transition temperature(T_(g))of the blends increased by 51.5℃,and the flexural strength,impact strength and fracture toughness of the blends were improved by 41.1%,186.2%and 42.7%,respectively.These improvements could be attributed to the phase separation structure of the PES-C/epoxy sys-tem.A PES-C film was used to improve the mode-II fracture toughness(G_(IIC))of CFCs.The G_(IIC) value of the 7μm PES-C film toughened laminate was improved by 80.3%compared to that of the control laminate.The increase in G_(IIC) was attributed to cohesive failure and plastic deformation in the interleaving region.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.
基金Project(07A071) supported by the Scientific Research Foundation of Hunan Provincial Education Department
文摘A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 and EPA6N at temperatures of 225 and 235 ℃ were investigated.The results of transmission electron microscopy(TEM) and atomic force microscopy(AFM) indicate that the silica particles are well dispersed in the polyamide 6 matrix on about 30 nm in diameter,which demonstrates that this method can effectively avoid agglomeration of the inorganic particles.The rheological results suggest that pure PA6 shows Newtonian behavior.However,the novel EPA6N exhibits a solid-like rheological behavior,which is due to the small size,large surface of silica particles and the stronger polyamide 6-silica chemical bond formed through the reactions of epoxy resins with end groups of PA6 molecular chains.The EPA6N also exhibits higher melt viscosity,storage modulus and loss modulus than those of pure PA6.
文摘Curing behavior of a model epoxies system (E-54/AG-80) with DDS as hardener was studied in this paper. Round disk compression mode DMA was executed to study the gel behaviors at different temperatures to determine the relationship between gel-time (t_ gel) and temperature. The cure kinetics was studied by dynamic DSC analysis. Parameters were obtained for establishing a phenomenological cure reaction model. The relationship between glass transition temperature (T_g) and cure degree (α) was also analyzed by both isothermal and dynamic DSC method based on DiBenedetto equation, which gave a mathematical description of T_g as a function of both time and temperature. Consequently, characteristic temperatures such as T_ g0, gelT_ g and T_ g∞ were determined. Finally, the Time-Temperature-Transition (TTT) diagram was designed based on the data and equations.