Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,huma...Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.展开更多
As one type of environment-friendly polymer, biodegradable starch-based materials have been widely explored in recent years and considered one of the most promising plastics in the future. Currently, either synthetic ...As one type of environment-friendly polymer, biodegradable starch-based materials have been widely explored in recent years and considered one of the most promising plastics in the future. Currently, either synthetic biodegradable aliphatic polyesters or certain natural polymers are usually blended with thermoplastic starch to enhance hydrophobicity and service performance of starch-based materials. The main deficiency lies in the low compatibility between starch and polyester phases. Therefore amphiphilic compatibilizers, such as hydroxyl functioned polyesters, need to be developed in the future. Moreover, multi-phase blending systems including two or more polyester phases are also supposed to be designed.展开更多
Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfac...Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfaces engineering plays important roles in developing highly efficient Sn-based PSCs via passivation of trap defects,alignment of energy levels,and incorporation of low-dimensional Sn-based perovskites.In this review,we summarize the development of Pb-free Sn-based perovskites and their applications in devices,especially the strategies of improving the interfaces.We also provide perspectives for future research.Our aim is to help the development of new and advanced approaches to achieving high-performance environment-friendly Pb-free Sn-based PSCs.展开更多
基金financially supported by National Natural Science Foundation of China(Grant No.52073071,51803041)Natural Science Funding for Excellent Young Scholar of Heilongjiang Province(YQ2022E021,L.Wang)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.DZJJ.2023056)the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute(No.JS220407)the financial support from the Spanish Ministry of Economy and the Canary Islands program Vieray Clavijo Senior(Ref.2023/00001156)。
文摘Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.
文摘As one type of environment-friendly polymer, biodegradable starch-based materials have been widely explored in recent years and considered one of the most promising plastics in the future. Currently, either synthetic biodegradable aliphatic polyesters or certain natural polymers are usually blended with thermoplastic starch to enhance hydrophobicity and service performance of starch-based materials. The main deficiency lies in the low compatibility between starch and polyester phases. Therefore amphiphilic compatibilizers, such as hydroxyl functioned polyesters, need to be developed in the future. Moreover, multi-phase blending systems including two or more polyester phases are also supposed to be designed.
基金supported by the Science and Technology Program of Sichuan Province(Nos.2017GZ0052,2020YFH0079,and 2020JDJQ0030)National Energy Novel Materials Center Project(No.NENMC-I-1701)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.YJ201722,YJ201955)support by National Natural Science Foundation of China(Grant No.U1804132)。
文摘Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfaces engineering plays important roles in developing highly efficient Sn-based PSCs via passivation of trap defects,alignment of energy levels,and incorporation of low-dimensional Sn-based perovskites.In this review,we summarize the development of Pb-free Sn-based perovskites and their applications in devices,especially the strategies of improving the interfaces.We also provide perspectives for future research.Our aim is to help the development of new and advanced approaches to achieving high-performance environment-friendly Pb-free Sn-based PSCs.