We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics...We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function φ(T ) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an ad-ditional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.展开更多
We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theor...We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang’s energy condition is also necessary for our nonhomogeneous system.展开更多
The existence of global BV solutions for the Aw-Rascle system with linear damping is considered.In order to get approximate solutions we consider the system in Lagrangian coordinates,then by using the wave front track...The existence of global BV solutions for the Aw-Rascle system with linear damping is considered.In order to get approximate solutions we consider the system in Lagrangian coordinates,then by using the wave front tracking method coupling with and suitable splitting algorithm and the ideas of[1]we get a sequence of approximate solutions.Finally we show the convergence of this approximate sequence to the weak entropic solution.展开更多
Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and gener...Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and generality, partly because theoretical knowledge about carbuncles is equally unsatisfactory. It is not known which numerical schemes are affected in which circumstances, what causes carbuncles to appear and whether carbuncles are purely mimerical artifacts or rather features of a continuum equation or model. This article presents evidence towards the latter: we propose that carbuncles are a special class of entropy solutions which can be physically correct in some circumstances. Using "filaments", we trigger a single carbuncle in a new and more reliable way, and compute the structure in detail in similarity coordinates. We argue that carbuncles can, in some circumstances, be valid vanishing viscosity limits. Trying to suppress them is making a physical assumption that may be false.展开更多
The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p...The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p initial value.We use the device of doubling variables and some technical analysis to prove the uniqueness result.Moreover we can prove that the L p entropy solution can be obtained as the limit of solutions of the corresponding regularized equations of nondegenerate parabolic type.展开更多
In this article, the author uses the compensated compactness method coupled with some basic ideas of the kinetic formulation developed by Lions, Perthame, Souganidis and Tadmor to give a refined proof for the existenc...In this article, the author uses the compensated compactness method coupled with some basic ideas of the kinetic formulation developed by Lions, Perthame, Souganidis and Tadmor to give a refined proof for the existence of global entropy solutions to a system of quadratic flux. The fire-new method of reduction of Young measures is a pith of this work.展开更多
基金Gui-Qiang CHEN was supported in part by the UK EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE(EP/E035027/1)the NSFC under a joint project Grant 10728101+4 种基金the Royal Society-Wolfson Research Merit Award(UK)Changguo XIAO was supported in part by the NSFC under a joint project Grant 10728101Yongqian ZHANG was supported in part by NSFC Project 11031001NSFC Project 11121101the 111 Project B08018(China)
文摘We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function φ(T ) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an ad-ditional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.
文摘We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang’s energy condition is also necessary for our nonhomogeneous system.
文摘The existence of global BV solutions for the Aw-Rascle system with linear damping is considered.In order to get approximate solutions we consider the system in Lagrangian coordinates,then by using the wave front tracking method coupling with and suitable splitting algorithm and the ideas of[1]we get a sequence of approximate solutions.Finally we show the convergence of this approximate sequence to the weak entropic solution.
文摘Numerical approximations of multi-dimensional shock waves sometimes ex- hibit an instability called the carbuncle phenomenon. Techniques for suppressing carbuncles are trial-and-error and lack in reliability and generality, partly because theoretical knowledge about carbuncles is equally unsatisfactory. It is not known which numerical schemes are affected in which circumstances, what causes carbuncles to appear and whether carbuncles are purely mimerical artifacts or rather features of a continuum equation or model. This article presents evidence towards the latter: we propose that carbuncles are a special class of entropy solutions which can be physically correct in some circumstances. Using "filaments", we trigger a single carbuncle in a new and more reliable way, and compute the structure in detail in similarity coordinates. We argue that carbuncles can, in some circumstances, be valid vanishing viscosity limits. Trying to suppress them is making a physical assumption that may be false.
基金Yachun Li’s research was supported partly by National Natural Science Foundation of China (10571120,10971135)the Program for New Century Excellent Talents of Chinese Ministry of Education (NCET-07-0546)+3 种基金Shanghai Shuguang Project 06SG11Zhigang Wang’s research was supported partly by Shanghai Jiao Tong University Innovation Fund For Postgraduates (AE071202)the University Young Teacher Sciences Foundation of Anhui Province (2010SQRL145)the Quality Project Found of Fuyang Normal College (2010JPKC07)
文摘The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p initial value.We use the device of doubling variables and some technical analysis to prove the uniqueness result.Moreover we can prove that the L p entropy solution can be obtained as the limit of solutions of the corresponding regularized equations of nondegenerate parabolic type.
基金Sponsored by the Foundation of Yancheng Teachers University (07YCKL061)
文摘In this article, the author uses the compensated compactness method coupled with some basic ideas of the kinetic formulation developed by Lions, Perthame, Souganidis and Tadmor to give a refined proof for the existence of global entropy solutions to a system of quadratic flux. The fire-new method of reduction of Young measures is a pith of this work.