期刊文献+
共找到1,101篇文章
< 1 2 56 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(eemd) Complete eemd with adaptive noise(CeemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
基于柴油机曲轴瞬时转速信号EEMD分解的失火故障诊断 被引量:1
2
作者 黄英 李准 +2 位作者 王健 刘辰 胡博睿 《北京理工大学学报》 北大核心 2025年第4期384-390,共7页
对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸... 对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸失火和双缸失火这三个工况区间.通过多循环平均方法对三个工况区间数据进行预处理,并通过集合经验模态分解方法分解,该方法能自适应地将曲轴转速信号分解为若干个本征模态函数.通过集合经验模态分解得到每个本征模态函数幅值的异常波动,确定包含故障信息的本征模态函数,为了进一步提取特征,需对该本征模态函数进行快速傅里叶变换,根据主频分量的幅值,得到故障特征.最后在多个转速工况下进行上述诊断流程,得出各个转过速工况的诊断准确率,实现了诊断算法的转速工况敏感性分析.实验结果表明该方法能有效提取故障特征,实现了十缸柴油机基于多个瞬时转速的失火故障诊断. 展开更多
关键词 柴油机 失火故障诊断 集合经验模态分解(eemd) 曲轴瞬时转速 特征提取 本征模态函数(IMFs) 快速傅里叶变换(FFT)
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取 被引量:1
3
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
融合EEMD与HGS-LSTM的船厂生产车间能耗预测
4
作者 王冲 华德睿 +2 位作者 彭江 黄林 陈奕沅 《船海工程》 北大核心 2025年第4期115-120,126,共7页
为精准预测船厂生产车间的能耗,提出一种融合了集合经验模态分解(EEMD)与长短期记忆网络(LSTM)的能耗预测模型。采用EEMD模型对能耗时序数据进行分解,降低原始时序的不稳定性;采用饥饿游戏搜索算法(HGS)对LSTM的超参数进行优化,并对分... 为精准预测船厂生产车间的能耗,提出一种融合了集合经验模态分解(EEMD)与长短期记忆网络(LSTM)的能耗预测模型。采用EEMD模型对能耗时序数据进行分解,降低原始时序的不稳定性;采用饥饿游戏搜索算法(HGS)对LSTM的超参数进行优化,并对分解的各本征模函数进行预测,将各个预测结果叠加得到最终预测结果;采用LSTM网络、PSO-LSTM网络、HGS-LSTM网络、EEMD-LSTM网络与该组合模型对某中型造船厂生产车间能耗数据进行预测。实验结果表明,EEMD-HGS-LSTM模型具有更高的预测精度,在单步和多步预测中的MAE、RMSE均明显低于其他对比预测模型。 展开更多
关键词 车间能耗预测 集合经验模态分解 长短期记忆网络 饥饿游戏搜索算法
在线阅读 下载PDF
优化FEEMD与相似度量的滚动轴承故障特征提取
5
作者 马军 李祥 +1 位作者 秦娅 熊新 《兵器装备工程学报》 北大核心 2025年第3期252-266,共15页
针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(n... 针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(northern goshawk optimization,NGO)确定FEEMD的模型参数后,利用优化后的FEEMD将滚动轴承振动信号分解为多个本征模态函数分量和残余项,融合形态波动一致性偏移距离(morphology fluctuation conformance deviation distance,MFCDD)指标筛选有效分量进行重构,最后对重构信号进行Hilbert包络解调,完成滚动轴承故障特征提取。试验结果表明,所提方法相比变分模态分解方法、峭度分量选取方法、改进的完备集合经验模态分解联合豪斯多夫距离与峭度值方法,信噪比分别平均提升了1.75、12.2639、2.0605 dB,均方根误差分别降低了0.0078、0.0430、0.0656,能够更加清晰、全面地提取出故障特征频率及其倍频。 展开更多
关键词 滚动轴承 故障特征提取 集合经验模态分解 相似性 北方苍鹰算法
在线阅读 下载PDF
基于CEEMDAN与自适应双阈值小波分析的心音去噪
6
作者 卢官明 唐瑭 +2 位作者 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第4期36-47,共12页
针对现有基于经验模态分解的心音去噪算法在进行模态分解后存在心脏杂音与噪声模态混叠的问题,提出了一种基于自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与自适应... 针对现有基于经验模态分解的心音去噪算法在进行模态分解后存在心脏杂音与噪声模态混叠的问题,提出了一种基于自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)与自适应双阈值小波分析的心音去噪算法。首先,通过CEEMDAN方法,将含噪心音信号分解为不同时间尺度上的固有模态函数(Intrinsic Mode Function,IMF)分量;然后,采用去趋势波动分析(Detrended Fluctuation Analysis,DFA)方法将不同的IMF分量判定为含噪的心脏杂音IMF分量或心音IMF分量;接着,利用小波分析技术,滤除含噪心脏杂音IMF分量中的噪声,保留含有病理特征的心脏杂音;最后,将保留下来的心脏杂音与心音IMF分量进行重构,得到去噪后的心音信号。在Khan数据集上的实验结果表明,在不同噪声强度下,所提出的心音去噪算法均能明显提高心音信号的信噪比,降低均方根误差,优于其他现有方法。对临床采集的新生儿心音信号进行去噪的实验结果表明,所提算法具有良好的抑制噪声能力,并保留了含有病理特征的心脏杂音。 展开更多
关键词 心音去噪 自适应噪声完全集合经验模态分解 去趋势波动分析 小波分析 心脏杂音
在线阅读 下载PDF
基于EEMD-GWO-VMD的滚动轴承故障特征提取
7
作者 张涛 张振彬 谢剑龙 《中国工程机械学报》 北大核心 2025年第3期470-475,共6页
针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,... 针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,以包络熵为目标函数,采用灰狼算法(GWO)优化变分模态分解(VMD)的惩罚因子和模态分解层数,并采用仿真信号对比分析VMD、GWO-VMD和EEMD-GWO-VMD这3种方法的降噪效果。最后,结合CWRU数据集和高速列车轴箱轴承台架试验数据,进一步验证EEMD-GWO-VMD降噪方法的有效性。 展开更多
关键词 滚动轴承 灰狼算法(GWO) 集成经验模态分解(eemd) 变分模态分解(VMD)
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
8
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
基于聚类EEMD-PCA-LSTM与误差补偿的光热电站短期太阳直接法向辐射预测
9
作者 张晓英 常正云 +1 位作者 罗童 张兴平 《电气工程学报》 北大核心 2025年第2期345-353,共9页
太阳直接法向辐射(Direct normal irradiance,DNI)的变化影响光热发电的可靠性和效率。以西北某光热电站为研究对象,提出一种聚类、集合经验模态分解(Ensemble empirical mode decomposition,EEMD)、主成分分析(Principal component ana... 太阳直接法向辐射(Direct normal irradiance,DNI)的变化影响光热发电的可靠性和效率。以西北某光热电站为研究对象,提出一种聚类、集合经验模态分解(Ensemble empirical mode decomposition,EEMD)、主成分分析(Principal component analysis,PCA)和长短期记忆(Long short-term memory,LSTM)神经网络与误差补偿的光热电站短期DNI预测模型。首先,充分考虑影响DNI的环境因素,研究气象参数与DNI间的关系,利用近邻传播(Affinitypropagation,AP)聚类算法得到同一天气下的典型日,利用EEMD将原始DNI序列进行分解得到各子模态,降低序列的非平稳性;其次,利用PCA得到关键影响因子,使原始序列相关性和冗余性降低,减少模型输入维度;然后,利用LSTM网络对各分解子模态建模预测得到初始预测DNI序列,将其与真实序列作差,得到两者间的误差序列,重新建立LSTM网络对误差序列进行预测,即误差补偿;最后,将初始预测DNI与误差序列求和,得到最终的预测模型,实现对光热电站短期DNI的预测。预测结果表明,该预测模型效果较好,预测精度达94%。 展开更多
关键词 直接法向辐射 光热发电 集合经验模态分解 主成分分析 长短期记忆神经网络 误差补偿
在线阅读 下载PDF
基于ICEEMDAN的微电网混合储能容量配置 被引量:1
10
作者 刘旭民 张彦 刘晓波 《南方电网技术》 北大核心 2025年第1期140-149,共10页
针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中... 针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中可再生能源出力和用电负荷波动导致的联络线功率波动问题。该方法通过对微电网中不平衡功率进行功率信号分解,并分析确定高频分量和低频分量,实现功率信号重构。针对不同储能系统技术特点,采用钠硫电池平抑低频分量,采用超级电容平抑高频分量。然后,通过建立以储能初始投资和维护成本最小为目标的HESS容量优化配置模型,利用商业求解器GUROBI求解混合储能配置方案。基于某并网型微电网进行算例分析,结果表明配置HESS能有效平抑微电网联络线功率波动,且该方法具有较好的经济性。算例分析结果验证了所提方法的有效性和可行性。 展开更多
关键词 改进自适应噪声完备集合经验模态分解(ICeemdAN) 微电网 混合储能 容量优化配置 GUROBI
在线阅读 下载PDF
基于EEMD-IPSO-BiLSTM的闸基渗压预测模型研究
11
作者 张孟颖 王荣 +1 位作者 喻桂成 王少波 《水电能源科学》 北大核心 2025年第7期138-141,212,共5页
闸基渗流稳定是水闸安全评价的重要指标之一,构建高精度的闸基渗压预测模型对保障水闸安全运行具有重要意义。为此,以某水闸工程闸基渗压为研究对象,构建了一种基于集合经验模态分解(EEMD)与改进粒子群算法(IPSO)优化双向长短期记忆神... 闸基渗流稳定是水闸安全评价的重要指标之一,构建高精度的闸基渗压预测模型对保障水闸安全运行具有重要意义。为此,以某水闸工程闸基渗压为研究对象,构建了一种基于集合经验模态分解(EEMD)与改进粒子群算法(IPSO)优化双向长短期记忆神经网络(BiLSTM)相结合的闸基渗压预测模型。所建预测模型得到的三个渗压测点预测结果分布规律符合一般工程经验,并与另外三种常规预测模型进行对比。结果表明,所建预测模型得到的三个测点预测结果的均方根误差、平均绝对误差、平均绝对百分比误差均小于其他三个对比模型,与实测值更为贴合,具有更高的预测精度。研究结果可为闸基渗压精准预测提供参考。 展开更多
关键词 水闸 渗压预测 集合经验模态分解 改进粒子群算法 双向长短期记忆神经网络
在线阅读 下载PDF
改进EEMD的冲击试验机冲击响应谱修正方法
12
作者 郑帅朋 王鹏 +1 位作者 张春辉 闫明 《噪声与振动控制》 北大核心 2025年第4期170-175,251,共7页
由冲击加速度信号计算得到的冲击响应谱是表征冲击环境的重要指标,但加速度传感器受强载荷作用会产生趋势项误差,双波冲击试验机的低频谱线会发生严重漂移。为还原真实冲击环境,使用集合经验模态分解法(EEMD)对加速度信号进行分解,并提... 由冲击加速度信号计算得到的冲击响应谱是表征冲击环境的重要指标,但加速度传感器受强载荷作用会产生趋势项误差,双波冲击试验机的低频谱线会发生严重漂移。为还原真实冲击环境,使用集合经验模态分解法(EEMD)对加速度信号进行分解,并提取各本征模态函数(IMF)出现峰值的时刻;在此基础上,基于K-均值聚类对各峰值时刻进行分类,确定重构信号所需的有效IMF分量,并结合峰度系数进一步判断所选有效IMF分量的合理性;最后使用重构加速度信号计算冲击响应谱,并通过低频段谱线斜率验证修正效果。研究结果表明:修正后的低频冲击响应谱平均斜率由-9.359 dB/oct提升到5.658 dB/oct,与标准斜率的误差为5.7%。EEMD修正方法能够有效还原冲击试验机真实冲击环境,可为舰载设备抗冲击评估提供重要参考。 展开更多
关键词 振动与波 冲击试验机 冲击响应谱 集合经验模态分解 K-均值聚类 峰度系数
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
13
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于EEMD与CNN-BiLSTM的噪声环境下滚动轴承故障诊断方法
14
作者 李军星 徐行 +1 位作者 贾现召 邱明 《轴承》 北大核心 2025年第2期85-92,共8页
针对滚动轴承在噪声环境中发生故障时,传统深度神经网络容易出现特征提取不充分,过拟合,泛化能力不足的问题,提出一种集成经验模态分解(EEMD)与卷积神经网络-双向长短时记忆网络(CNN-BiLSTM)的故障诊断方法。在信号预处理阶段使用EEMD... 针对滚动轴承在噪声环境中发生故障时,传统深度神经网络容易出现特征提取不充分,过拟合,泛化能力不足的问题,提出一种集成经验模态分解(EEMD)与卷积神经网络-双向长短时记忆网络(CNN-BiLSTM)的故障诊断方法。在信号预处理阶段使用EEMD将噪声环境下的振动信号分解为一系列固有模态函数,降低噪声的影响;在CNN部分的第1层使用大卷积核与多分支结构获得不同的感受野,在每一个分支中随机丢弃一些数据增强模型的抗干扰能力,从而提取到更具泛化能力的多样化特征信息,后续部分使用残差结构,以免网络较深时发生梯度消失的现象,解决深层次网络退化问题;在BiLSTM部分使用2个并行的分支结构,用于增强模型对时序信息的利用,从而提高模型在不同工况和噪声环境下的准确率。使用凯斯西储大学轴承数据集和西安交通大学轴承数据集对所提方法进行验证,并与其他深度学习方法和传统机器学习方法进行对比,结果表明本文方法在多种工况和噪声环境下均取得了优异的故障诊断性能。 展开更多
关键词 滚动轴承 故障诊断 集成经验模态分解 卷积神经网络 双向长短时记忆神经网络
在线阅读 下载PDF
基于ICEEMDAN算法的高速双圆弧斜齿轮泵振动试验特性分析
15
作者 董庆伟 李博 +2 位作者 李阁强 韩帅康 皇甫科维 《机床与液压》 北大核心 2025年第4期151-157,共7页
针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分... 针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分析。在此基础上,基于增强型完全集合经验模态分解(ICEEMDAN)算法对数据进行特征提取,通过模糊熵与峭度构建的综合指标选取内在模态函数分量(IMF)进行分析,得到双圆弧斜齿轮泵在不同转速和压力负载工况下的振动特性。结果表明:在所测工况下,出油口区域的振动幅度普遍高于进油口和泵体上侧区域,而且压力负载对泵的振动分布具有一定影响;在恒定压力负载下,泵的振动幅值随转速的提高而增加,且这种增长随转速的提高而加剧;在恒定转速下,泵的振动幅度整体趋势随着压力负载的增加而上升,但在特定压力负载点出现下降。 展开更多
关键词 斜齿轮泵 高速工况 振动特性 增强型完全集合经验模态分解(ICeemdAN)算法
在线阅读 下载PDF
基于EEMD和GP的混合直流系统双端保护方案研究
16
作者 武传健 梁正堂 +2 位作者 黄强 张晓东 张大海 《智慧电力》 北大核心 2025年第1期98-106,共9页
为了提高混合直流输电系统保护可靠性,提出一种基于EEMD和GP算法的双端保护方案。首先,分析控制策略、拓扑结构、分布电容因素影响下混合直流输电系统故障特征,挖掘暂态电流频域相似性特征;其次,引入并融合EEMD算法和GP算法,利用组合算... 为了提高混合直流输电系统保护可靠性,提出一种基于EEMD和GP算法的双端保护方案。首先,分析控制策略、拓扑结构、分布电容因素影响下混合直流输电系统故障特征,挖掘暂态电流频域相似性特征;其次,引入并融合EEMD算法和GP算法,利用组合算法表达混合直流系统暂态电流的频域相似性特征,以两侧暂态电流关联维数的差异性建立保护判据;最后,搭建模型并验证基于关联维数的双端保护方案的正确性、可靠性和优越性。结果表明,所提方案可在较强干扰下可靠识别故障区域。 展开更多
关键词 混合直流系统 集合经验模态分解 GP算法 双端保护
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
17
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CeemdAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于EEMD与功率谱熵的旋转机械故障诊断方法
18
作者 席俊杰 谢明川 +1 位作者 汪勇 张海波 《航空发动机》 北大核心 2025年第3期83-88,共6页
为了提高航空发动机旋转机械故障信号特征提取效果与诊断准确率,提出了一种集合经验模态分解(EEMD)融合功率谱熵的故障诊断方法。该方法采用EEMD对原始信号进行分解,并利用功率谱熵定量分析了各阶本征模态函数(IMF)的信息量,并对部分IM... 为了提高航空发动机旋转机械故障信号特征提取效果与诊断准确率,提出了一种集合经验模态分解(EEMD)融合功率谱熵的故障诊断方法。该方法采用EEMD对原始信号进行分解,并利用功率谱熵定量分析了各阶本征模态函数(IMF)的信息量,并对部分IMF自适应降噪处理。重构所有IMF与余项,并输入至卷积神经网络(CNN)进行训练与故障分类。分别利用理想信号与航空发动机旋转机械故障模拟平台的实测信号,验证了所提出的信号处理方法与故障诊断方法的有效性与优势。结果表明:相较于传统信号处理与故障诊断方法,该方法处理信号后的信噪比(SNR)提高25%以上,均方误差(MSE)减小40%以上,故障诊断准确率提高10%以上,更有利于工程中的旋转机械故障定位与诊断。 展开更多
关键词 故障诊断 旋转机械 信号处理 集合经验模态分解 功率谱熵 卷积神经网络 航空发动机
在线阅读 下载PDF
基于CEEMD-SE-PSR-BP的短期风速预测
19
作者 高晟扬 李法社 《太阳能学报》 北大核心 2025年第4期415-422,共8页
为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE... 为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE的特征中重组风速序列。继而,将各子序列的预测结果进行相空间重构,获取神经网络预测的输入输出样本。最后运用神经网络预测每个样本,并将所有预测结果累加。此外,还对风电场的实际运行数据进行试验,并将模型的预测结果与其他预测方法进行对比,实验结果显示出此模型在提高风速预测精度方面的显著优势。 展开更多
关键词 风速预测 样本熵 互补集合经验模态分解 相空间重构 神经网络 时间序列
在线阅读 下载PDF
基于CEEMDAN-LSTM的管道输送稀饲料浓度研究
20
作者 于慧泽 刘玉健 +1 位作者 刘涛 许少鹏 《饲料工业》 北大核心 2025年第10期8-18,共11页
为解决管道输送稀饲料过程中稀饲料浓度难以检测的问题,提出一种基于完全自适应噪声完备集合经验模态分解(CEEMDAN)与长短期记忆神经网络(LSTM)相组合的分类预测方法。该方法先通过CEEMDAN分解算法,将采集到的声音信号和振动信号分解为... 为解决管道输送稀饲料过程中稀饲料浓度难以检测的问题,提出一种基于完全自适应噪声完备集合经验模态分解(CEEMDAN)与长短期记忆神经网络(LSTM)相组合的分类预测方法。该方法先通过CEEMDAN分解算法,将采集到的声音信号和振动信号分解为多层具有不同特征的子序列分量本征模态函数(intrinsic mode function,IMF),然后分别建立LSTM网络模型进行单步预测,最后通过叠加预测结果得出管道输送稀饲料浓度最终预测值。结果表明:CEEMDAN分解算法优于经验模态分解(empirical mode decomposition,EMD)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)算法,可克服EMD模态混叠现象和EEMD带来的冗余噪声影响。CEEMDAN-LSTM模型分类预测振动信号的平均绝对误差(mean absolute error,MAE)指标为0.001、均方根误差(root mean square error,RMSE)指标为0.001,分类预测声音信号的MAE指标为0.036、RMSE指标为0.044。相较神经网络(back propagation,BP)、长短期记忆网络、支持向量回归(support vector machines,SVM)等分类预测模型具有更高的准确性。该方法可在管道输送稀饲料时精确预测其浓度提供理论依据,具有一定的实际应用意义。 展开更多
关键词 管道输送 浓度 完全自适应噪声完备集合经验模态分解(CeemdAN) 长短期记忆神经网络(LSTM) 分类预测
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部