期刊文献+
共找到500篇文章
< 1 2 25 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(eemd) Complete eemd with adaptive noise(CeemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition 被引量:1
2
作者 符懋敬 庄建军 +3 位作者 侯凤贞 展庆波 邵毅 宁新宝 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期592-601,共10页
In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose th... In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals. 展开更多
关键词 ensemble empirical mode decomposition gait series peak detection intrinsic mode functions
在线阅读 下载PDF
优化FEEMD与相似度量的滚动轴承故障特征提取
3
作者 马军 李祥 +1 位作者 秦娅 熊新 《兵器装备工程学报》 北大核心 2025年第3期252-266,共15页
针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(n... 针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(northern goshawk optimization,NGO)确定FEEMD的模型参数后,利用优化后的FEEMD将滚动轴承振动信号分解为多个本征模态函数分量和残余项,融合形态波动一致性偏移距离(morphology fluctuation conformance deviation distance,MFCDD)指标筛选有效分量进行重构,最后对重构信号进行Hilbert包络解调,完成滚动轴承故障特征提取。试验结果表明,所提方法相比变分模态分解方法、峭度分量选取方法、改进的完备集合经验模态分解联合豪斯多夫距离与峭度值方法,信噪比分别平均提升了1.75、12.2639、2.0605 dB,均方根误差分别降低了0.0078、0.0430、0.0656,能够更加清晰、全面地提取出故障特征频率及其倍频。 展开更多
关键词 滚动轴承 故障特征提取 集合经验模态分解 相似性 北方苍鹰算法
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
4
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
5
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
6
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CeemdAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
滑坡位移CEEMD-CIWOA-BP预测模型
7
作者 余国强 侯克鹏 孙华芬 《有色金属(矿山部分)》 2025年第1期106-114,142,共10页
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量... 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。 展开更多
关键词 滑坡位移 互补集合经验模态分解 BP神经网络 改进鲸鱼优化算法 时间序列
在线阅读 下载PDF
样本熵改进EEMD算法在继电器参数异常值处理中的应用
8
作者 彭威 孙鑫亮 李文华 《电力机车与城轨车辆》 2025年第1期47-54,共8页
针对继电器参数中存在的异常值问题,文章提出了一种模态异常值处理模型。首先,依据继电器特点对集合经验模态分解(EEMD)算法中的参数进行灵敏性分析,确定优化参数;其次,针对EEMD分解中存在的模态混叠现象,采用样本熵和哈里斯鹰优化算法... 针对继电器参数中存在的异常值问题,文章提出了一种模态异常值处理模型。首先,依据继电器特点对集合经验模态分解(EEMD)算法中的参数进行灵敏性分析,确定优化参数;其次,针对EEMD分解中存在的模态混叠现象,采用样本熵和哈里斯鹰优化算法得到有效的模态分量;最后,分别采用拉依达准则及三次样条插值法对各模态异常数据进行识别及替换,将处理后的所有分量进行重构异常值,得到处理后的数据序列。继电器接触压降参数的实例分析结果表明,该模型具有良好的泛化能力,且能够有效地识别出潜在异常值。 展开更多
关键词 集合经验模态分解(eemd) 样本熵 模态混叠 三次样条插值 继电器参数
在线阅读 下载PDF
基于EEMD-GRU-NN锂离子电池表面温度预测方法研究
9
作者 叶石丰 洪朝锋 +4 位作者 綦晓 吴伟雄 谭子健 周奇 张兆阳 《储能科学与技术》 北大核心 2025年第1期380-387,共8页
随着全球可持续能源需求的持续增加,储能电池的安全性愈发重要。准确预测电池温度可以防止电池过热,避免因温度过高导致的电池故障、起火或爆炸,从而提高设备的安全性。为此,本研究提出一种基于集合经验模态分解(ensemble empirical mod... 随着全球可持续能源需求的持续增加,储能电池的安全性愈发重要。准确预测电池温度可以防止电池过热,避免因温度过高导致的电池故障、起火或爆炸,从而提高设备的安全性。为此,本研究提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)的门控循环单元(gated recurrent unit, GRU)和基础神经网络(neural network, NN)联合预测方法。首先,利用EEMD将锂电池温升数据分解为周期分量和趋势分量,并将其作为监督学习的离线训练目标值;然后,结合电池温度特性选取合适的特征参数作为模型的输入特征,针对分解得到的不同分量,分别构建基于GRU和NN的实时在线预测模型;最后,将两种模型的输出叠加作为最终预测结果,并通过与常见神经网络模型的比较,证明了所提出方法的准确性。实验结果表明,在常温下,本研究提出的方法在各个评价指标上均优于常见模型,预测结果的均方根误差为0.10℃,平均绝对误差为0.075℃,最大误差为0.34℃。此外,在极端环境下,模型的预测能力有所下降,但其误差仍在合理范围内,证明了该模型在极端条件下仍具有较好的适应能力。 展开更多
关键词 锂离子电池 温度预测 集合经验模态分解 门控循环单元
在线阅读 下载PDF
强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断
10
作者 朱仁杰 宋恩哲 +1 位作者 姚崇 柯赟 《中国舰船研究》 北大核心 2025年第2期20-29,共10页
[目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电... [目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电机故障信号分解为多个本征模态函数(IMF)分量,并基于去趋势波动分析(DFA)划分IMF中噪声和信息的主导信号,对于噪声主导信号使用经验小波变化(EWT)予以降噪;然后,构建BRECAN网络,基于变分贝叶斯理论,使用网络参数代替传统网络点估计的训练方式,使用参数建模,拟合噪声对模型训练的干扰,并通过残差高效通道注意力(RECA)模块引导网络提取故障差异特征;最后,通过电机故障模拟实验台,验证所提方法的有效性。[结果]结果表明,所提方法在强噪声下能够实现船舶电机故障的精确诊断,在信噪比为-12dB的条件下仍能保持90%以上的诊断精度。[结论]研究成果可为强噪声下船舶电机故障诊断提供参考。 展开更多
关键词 电动机 故障分析 故障诊断 人工智能 完全集合经验模态分解(CeemdAN) 贝叶斯残差高效通道注意力网络(BRECAN)
在线阅读 下载PDF
基于MODWT-CEEMDAN-LSTM的短期光伏功率区间预测模型
11
作者 陈船宇 熊国江 +1 位作者 方厚康 罗颖勋 《太阳能学报》 北大核心 2025年第2期416-424,共9页
针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解... 针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解得到本征模态函数(IMF)分量;再将这些IMF分量分别输入进LSTM进行分量预测并将分量预测结果重构得到点预测结果;最后利用分位数回归对点预测结果进行建模后得到区间预测结果。实际算例表明,时频域分解方法与频域分解方法的结合,使得该模型在3种天气情况下的光伏功率点预测和区间预测均表现出优异的鲁棒性和准确性。 展开更多
关键词 光伏功率 预测 深度学习 长短期记忆 最大重叠小波变换 自适应噪声完备集合经验模态分解
在线阅读 下载PDF
CEEMD-FastICA-CWT联合瞬态响应阶次的电驱总成噪声源识别 被引量:2
12
作者 张威 景国玺 +2 位作者 武一民 杨征睿 高辉 《中国测试》 CAS 北大核心 2024年第4期144-152,共9页
以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastI... 以某增程式电驱动总成为研究对象,提出基于联合算法的噪声分离识别模型。首先,采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)联合快速独立分量分析(fast independent component analysis,FastICA)方法提取纯电模式稳态工况下单一通道噪声信号特征,利用复Morlet小波变换及FFT对各分量信号时频特性进行识别。其次,采用阶次分析法和声能叠加法对稳态分量信号对应的各瞬态响应阶次能量进行对比分析,并结合皮尔逊积矩相关系数(Pearson product moment correlation coefficient,PPMCC)相似性识别确定不同噪声激励源贡献度。结果表明:减速齿副啮合噪声对该增程式电驱总成纯电模式运行噪声整体贡献度最大。 展开更多
关键词 电驱动总成 噪声源识别 互补集合经验模态分解 快速独立分量分析 连续小波变换 阶次分析
在线阅读 下载PDF
基于CEEMD和统计参数的斜拉桥损伤识别方法研究
13
作者 刘杰 丁雪 +2 位作者 刘庆宽 王海龙 卜建清 《振动与冲击》 EI CSCD 北大核心 2024年第19期326-336,共11页
为解决仅使用互补集成经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法的斜拉桥信号分解存在含噪固有模态函数(intrinsic mode function,IMF)分量且不能进行损伤定量的问题,提出了一种基于CEEMD与统计参... 为解决仅使用互补集成经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法的斜拉桥信号分解存在含噪固有模态函数(intrinsic mode function,IMF)分量且不能进行损伤定量的问题,提出了一种基于CEEMD与统计参数方法相结合的斜拉桥损伤识别方法。该方法基于CEEMD方法对斜拉桥动力响应信号进行自适应性分解,确定适用的白噪声幅值标准差并推导CEEMD方法的集成次数,得到各阶IMF分量;采用欧氏距离对分解的IMF分量进行谱系聚类分析以避免模态混叠现象;采用峰度统计参数的有效权重峰度指标方法滤除含噪IMF分量,提取有效IMF分量并重构为有效IMF分量和;利用变异系数统计参数、二阶中心差分法和泰勒展开式推导损伤定位指标,根据四阶统计矩峰度统计参数推导损伤定量指标。用所提方法对某斜拉桥进行损伤识别研究,结果表明:仿真分析的损伤定位识别精度为100%,损伤定量最大误差为1.80%;在高斯白噪声干扰下,损伤定位不受影响,损伤定量最大误差为1.88%;进行实桥的损伤识别,结果表明实桥主梁无损伤。 展开更多
关键词 斜拉桥 损伤识别方法 互补集成经验模态分解(Ceemd) 统计参数 损伤定量 噪声干扰
在线阅读 下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
14
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 超短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
在线阅读 下载PDF
基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测 被引量:2
15
作者 刘凡 李捍东 覃涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期151-158,共8页
为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法。首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解... 为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法。首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解(CEEMDAN)对原始风电功率进行分解,构成训练数据集。其次,使用深度残差级联(DRnet)构建多层的时间卷积网络(TCN),并使用AsyHyperband算法对序列分量模型进行超参数寻优。最后,对序列分量分别进行预测,重构预测结果得到预测值。实验表明,该文提出的方法相比于其他方法能有效降低风电功率预测误差。 展开更多
关键词 风电功率 预测 神经网络 多层 集成经验模态分解 超参数搜索
在线阅读 下载PDF
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:4
16
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair Complete ensemble empirical mode decomposition with adaptive noise(CeemdAN) Generative adversarial interpolation network(GAIN)
在线阅读 下载PDF
基于CEEMDAN-WSVD组合串扰消除法车内噪声源识别 被引量:3
17
作者 李艺江 陈克 《噪声与振动控制》 CSCD 北大核心 2024年第4期224-230,共7页
为解决车内噪声源识别中结构路径易受外部因素干扰,以及多源振动串扰影响,导致采集的工况数据存在噪声等问题,提出基于自适应噪声的完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)... 为解决车内噪声源识别中结构路径易受外部因素干扰,以及多源振动串扰影响,导致采集的工况数据存在噪声等问题,提出基于自适应噪声的完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)的CEEMDAN-WSVD组合去噪法,该方法利用自适应加噪特征避免模态混叠现象发生,引入样本熵对高频含噪分量进行小波变换(Wavelet Transform,WT),实现一层降噪后进行重构;并采用奇异值分解(Singular Value Decomposition,SVD)对重构信号获取主分向量,同时使用主分量衰减方法剔除较小主分量,实现二层降噪。运用模拟仿真信号验证上述方法对复杂含噪信号有降噪效果。通过对采集的工况数据降噪处理,计算路径传递率并得到贡献量。将各降噪方法应用于工况传递路径模型中对比分析,发现经过本文方法降噪后模型的合成响应与实测响应准确性较高,降噪效果较优。 展开更多
关键词 声学 完备集合经验模态分解 小波变换 奇异值分解 工况传递路径 噪声源识别
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:2
18
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(ICeemdAN) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:4
19
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
在线阅读 下载PDF
基于CEEMDAN-HT的永磁同步电机匝间短路振动信号故障特征提取研究 被引量:2
20
作者 夏焰坤 李欣洋 +1 位作者 任俊杰 寇坚强 《振动与冲击》 EI CSCD 北大核心 2024年第5期72-81,共10页
由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(co... 由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与希尔伯特变换(Hilbert transform, HT)结合,构成一种CEEMDAN-HT非线性信号分析方法,并将其应用于提取振动信号故障特征。首先,利用CEEMDAN算法分解振动信号,得到一系列本征模态函数(intrinsic mode function, IMF),并将主元分析中的方差贡献率用于识别包含故障特征信息的IMF。其次,使用HT对方差贡献率较高的IMF进行分析,并以三维联合时频图呈现时间、瞬时频率与幅值,得到了主要故障特征。最后,使用ANSYS有限元软件建立了电机短路故障模型,并搭建了短路故障试验平台,通过对比有限元仿真结果与试验结果,对提出的方法进行了有效性和准确性验证。 展开更多
关键词 永磁同步电机(permanent magnet synchronous motor PMSM) 振动信号 自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise CeemdAN) 特征提取 希尔伯特变换(Hilbert transform HT)
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部