期刊文献+
共找到1,816篇文章
< 1 2 91 >
每页显示 20 50 100
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm 被引量:12
1
作者 WANG Cuiyu LI Yang LI Xinyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期261-271,共11页
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ... The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms. 展开更多
关键词 flexible job shop scheduling problem(FJSP) collaborative genetic algorithm co-evolutionary algorithm
在线阅读 下载PDF
Job shop scheduling problem with alternative machines using genetic algorithms 被引量:10
2
作者 I.A.Chaudhry 《Journal of Central South University》 SCIE EI CAS 2012年第5期1322-1333,共12页
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther... The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines. 展开更多
关键词 alternative machine genetic algorithm (GA) job shop scheduling SPREADSHEET
在线阅读 下载PDF
A dual population multi-operator genetic algorithm for flight deck operations scheduling problem 被引量:7
3
作者 CUI Rongwei HAN Wei +2 位作者 SU Xichao LIANG Hongyu LI Zhengyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期331-346,共16页
It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analy... It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analyzed,then the model of the multi-aircraft integrated scheduling problem with transfer times(MAISPTT)is established.A dual population multi-operator genetic algorithm(DPMOGA)is proposed for solving the problem.In the algorithm,the dual population structure and random-key encoding modified by starting/ending time of operations are adopted,and multiple genetic operators are self-adaptively used to obtain better encodings.In order to conduct the mapping from encodings to feasible schedules,serial and parallel scheduling generation scheme-based decoding operators,each of which adopts different justified mechanisms in two separated populations,are introduced.The superiority of the DPMOGA is verified by simulation experiments. 展开更多
关键词 genetic algorithm project scheduling flight deck operation transfer times of resources
在线阅读 下载PDF
Simultaneous scheduling of machines and automated guided vehicles in flexible manufacturing systems using genetic algorithms 被引量:5
4
作者 I.A.Chaudhry S.Mahmood M.Shami 《Journal of Central South University》 SCIE EI CAS 2011年第5期1473-1486,共14页
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde... The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model. 展开更多
关键词 automated guided vehicles (AGVs) scheduling JOB-SHOP genetic algorithms flexible manufacturing system (FMS) SPREADSHEET
在线阅读 下载PDF
Method for electromagnetic detection satellites scheduling based on genetic algorithm with alterable penalty coefficient 被引量:1
5
作者 Jun Li Hao Chen +2 位作者 Zhinong Zhong Ning Jing Jiangjiang Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期822-832,共11页
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The... The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm. 展开更多
关键词 electromagnetic detection satellite (EDS) scheduling genetic algorithm (GA) constraint handling penalty function method alterable penalty coefficient.
在线阅读 下载PDF
A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm
6
作者 李云峰 武小悦 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第3期203-208,共6页
A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data tra... A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data transmission task model and satellite data transmission scheduling problem model are established.Secondly,the conflicts in scheduling are discussed.According to the meaning of possible conflict,the method to divide possible conflict task set is given.Thirdly,a hybrid algorithm which consists of genetic algorithm and heuristic information is presented.The heuristic information comes from two concepts,conflict degree and conflict number.Finally,an example shows the algorithm's feasibility and performance better than other traditional 展开更多
关键词 航天系统 人工智能理论 勘测技术 遗传算法
在线阅读 下载PDF
Hybrid Genetic Algorithms with Fuzzy Logic Controller
7
作者 Zheng Dawei & Gen Mitsuo Department of Industrial and Systems Engineering, Ashikaga Institute of Technology, 326, Japan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期9-15,共7页
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com... In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper. 展开更多
关键词 Machine scheduling problem Hybrid genetic algorithms Fuzzy logic.
在线阅读 下载PDF
Coordinate scheduling approach for EDS observation tasks and data transmission jobs 被引量:9
8
作者 Hao Chen Jiangjiang Wu +2 位作者 Wenyuan Shi Jun Li Zhinong Zhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期822-835,共14页
Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observ... Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observation systems. However, the current works mainly focus on the scheduling of imaging satellites, little work focuses on the scheduling of EDSes for its specific requirements.And current works mainly schedule satellite resources and data down-link resources separately, not considering them in a globally optimal perspective. The EDSes and data down-link resources are scheduled in an integrated process and the scheduling result is searched globally. Considering the specific constraints of EDS, a coordinate scheduling model for EDS observation tasks and data transmission jobs is established and an algorithm based on the genetic algorithm is proposed. Furthermore, the convergence of our algorithm is proved. To deal with some specific constraints, a solution repairing algorithm of polynomial computing time is designed. Finally, some experiments are conducted to validate the correctness and practicability of our scheduling algorithms. 展开更多
关键词 electromagnetic detection satellites scheduling satellites and ground stations coordinate scheduling constraint handling solution repairing method genetic algorithm
在线阅读 下载PDF
Improvement of Lagrangian relaxation performance for open pit mines constrained long-term production scheduling problem 被引量:2
9
作者 E.Moosavi J.Gholamnejad +1 位作者 M.Ataee-pour E.Khorram 《Journal of Central South University》 SCIE EI CAS 2014年第7期2848-2856,共9页
Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it pos... Constrained long-term production scheduling problem(CLTPSP) of open pit mines has been extensively studied in the past few decades due to its wide application in mining projects and the computational challenges it poses become an NP-hard problem.This problem has major practical significance because the effectiveness of the schedules obtained has strong economical impact for any mining project.Despite of the rapid theoretical and technical advances in this field,heuristics is still the only viable approach for large scale industrial applications.This work presents an approach combining genetic algorithms(GAs) and Lagrangian relaxation(LR) to optimally determine the CLTPSP of open pit mines.GAs are stochastic,parallel search algorithms based on the natural selection and the process of evolution.LR method is known for handling large-scale separable problems; however,the convergence to the optimal solution can be slow.The proposed Lagrangian relaxation and genetic algorithms(LR-GAs) combines genetic algorithms into Lagrangian relaxation method to update the Lagrangian multipliers.This approach leads to improve the performance of Lagrangian relaxation method in solving CLTPSP.Numerical results demonstrate that the LR method using GAs to improve its performance speeding up the convergence.Subsequently,highly near-optimal solution to the CLTPSP can be achieved by the LR-GAs. 展开更多
关键词 constrained long-term production scheduling problem open pit mine Lagrangian relaxation genetic algorithm
在线阅读 下载PDF
面向碳减排的梯级水库蓄水期水碳多目标优化调度研究 被引量:2
10
作者 周研来 宁志昊 何鋆涛 《长江科学院院报》 北大核心 2025年第6期194-202,共9页
考虑到当前梯级水库蓄水调度研究尚未开展碳减排调度,基于碳排放因子法提出了梯级水库蓄水期水碳多目标调度模型,制定了梯级水库提前蓄水策略,并以防洪风险最小化、发电量最大化和温室气体排放量最小化为调度目标,采用NSGA-II求解调度... 考虑到当前梯级水库蓄水调度研究尚未开展碳减排调度,基于碳排放因子法提出了梯级水库蓄水期水碳多目标调度模型,制定了梯级水库提前蓄水策略,并以防洪风险最小化、发电量最大化和温室气体排放量最小化为调度目标,采用NSGA-II求解调度模型推求了梯级水库蓄水期优化调度方案,在金沙江中下游6座水库与三峡水库组成的梯级水库开展了实例研究。结果表明:相较于现行调度方案,优化调度方案集在防洪库容占用率为0~4.92%的情况下,发电量提升了7.23~40.26亿kW·h/a(0.65%~3.60%),弃水量减少了15.82~55.03亿m^(3)/a(6.45%~22.43%),温室气体排放量降低了38.55~45.63 Gg CO_(2e)/a(8.33%~9.85%),碳排放强度降低了0.39~0.47 kg CO_(2e)/(MW·h)(9.49%~11.44%),显著提升了梯级水库的发电量、抗旱供水能力并减少了温室气体排放。研究成果为实现梯级水库蓄水期水碳协同调度提供了技术支撑。 展开更多
关键词 水碳调度 蓄水调度 碳排放 非支配排序遗传算法 梯级水库
在线阅读 下载PDF
不确定动态柔性作业车间调度方法的鲁棒性评估
11
作者 马建 高伟男 《控制工程》 北大核心 2025年第10期1846-1856,共11页
传统的静态作业车间调度方法在应对实际制造环境中的动态变化时,常表现出应变能力不足和适应性差等缺陷。现有的大多数动态作业车间调度方法在具有单一不确定因素的环境中能够发挥作用,在多种不确定因素并存的复杂环境中往往难以取得预... 传统的静态作业车间调度方法在应对实际制造环境中的动态变化时,常表现出应变能力不足和适应性差等缺陷。现有的大多数动态作业车间调度方法在具有单一不确定因素的环境中能够发挥作用,在多种不确定因素并存的复杂环境中往往难以取得预期效果。为了深入探讨调度方法在不确定场景下的鲁棒性,首先引入加工时间波动、新工件插入和工件优先级调整3种不确定因素,并设计存在两种不确定因素的调度场景;然后,在不确定场景下,将遗传算法、模拟退火算法、先进先出规则、最短处理时间规则和最长处理时间规则应用在多个调度问题实例中。实验结果表明,模拟退火算法在不确定场景下表现出显著的鲁棒性,3种基本调度规则表现出较低的调度效率和鲁棒性。 展开更多
关键词 动态车间调度 遗传算法 模拟退火算法 调度规则 鲁棒性
在线阅读 下载PDF
基于模拟退火遗传算法的舰船编队网络优化调度方法
12
作者 陆青梅 赵山林 高媛 《舰船科学技术》 北大核心 2025年第10期155-160,共6页
舰船编队网络是一个复杂的通信系统,为减少通信延迟,确保信息的及时传递,提高整个编队的反应速度和作战效能,提出基于模拟退火遗传算法的舰船编队网络优化调度方法。以最小通信总延迟与总能耗为目标函数,通过设置约束条件,建立舰船编队... 舰船编队网络是一个复杂的通信系统,为减少通信延迟,确保信息的及时传递,提高整个编队的反应速度和作战效能,提出基于模拟退火遗传算法的舰船编队网络优化调度方法。以最小通信总延迟与总能耗为目标函数,通过设置约束条件,建立舰船编队网络优化调度模型。利用模拟退火遗传算法求解调度模型,实现最小通信总延迟与总能耗的舰船编队网络优化调度。实验结果表明,应用本文方法后,舰船编队网络的通信总延迟在0~80 ms之间,能耗保持在580 kWh以下。说明本文方法可以有效提升舰船编队网络通信的稳定性和效率,显著增强了编队的作战适应性和应变能力,为海军作战和海上安全提供更为可靠的支撑。 展开更多
关键词 模拟退火 遗传算法 舰船编队网络 优化调度 适应性 应变能力
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
13
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
考虑恢复过程的桥梁抗震韧性评估方法
14
作者 李廷辉 刘金龙 +2 位作者 李晓丽 王燕 计静 《振动与冲击》 北大核心 2025年第7期132-145,共14页
提出了一种考虑恢复过程的混凝土桥梁结构抗震概率韧性评估方法,该方法基于暴露在恶劣环境下的混凝土结构生命周期分析的一般方法,以各破坏状态下的时变抗震能力作为功能指标,将灾害发生后残余功能和恢复过程与地震事件发生的时间联系... 提出了一种考虑恢复过程的混凝土桥梁结构抗震概率韧性评估方法,该方法基于暴露在恶劣环境下的混凝土结构生命周期分析的一般方法,以各破坏状态下的时变抗震能力作为功能指标,将灾害发生后残余功能和恢复过程与地震事件发生的时间联系起来。通过对时变桥梁易损性模型进行抽样获得桥梁地震破坏样本,结合时变功能指标,采用遗传算法(genetic algorithm,GA)解决资源约束调度问题(resource constrained project scheduling problem,RCPSP),给出了桥梁震后的具体恢复过程,最终得到了桥梁结构服役期间的抗震韧性。结果发现,当不考虑时变功能时,计算得到的桥梁抗震韧性要明显大于考虑时变功能计算得到的抗震韧性,这样会高估桥梁抵抗地震灾害及从中恢复的能力,不利于震后恢复工作的展开。选取的控制时间(t_(h)-t_(0))要合理,如果使控制时间(t_(h)-t_(0))过小,计算得到的桥梁抗震韧性普遍为0,此时就不能很好地表达桥梁的抗震韧性。 展开更多
关键词 时变功能 抗震韧性 遗传算法(GA) 资源约束调度问题(RCPSP)
在线阅读 下载PDF
基于改进遗传算法的气田无人机巡检调度优化
15
作者 孙艳萍 王道通 +3 位作者 张丹 杨熙明 屈文涛 孙振 《科学技术与工程》 北大核心 2025年第27期11668-11675,共8页
气田环境中,由于多个巡检任务并存且任务点之间的距离较远,巡检无人机的调度变得极为复杂且难以高效实施。针对这一现状,为提高调度方案的质量和稳定性,结合精英保留策略对遗传算法进行优化。优化算法采用一种矩阵元素编码方式,这一方... 气田环境中,由于多个巡检任务并存且任务点之间的距离较远,巡检无人机的调度变得极为复杂且难以高效实施。针对这一现状,为提高调度方案的质量和稳定性,结合精英保留策略对遗传算法进行优化。优化算法采用一种矩阵元素编码方式,这一方法显著减少了计算时间,并确保了后续计算中染色体的完整性。在此编码方式的基础上,计算了每个个体的适应度,并根据适应度高低进行分组,从而提升了计算结果的精准性。进一步,引入了改进式轮盘赌选择法,以确保种群的多样性,极大地降低了算法陷入局部最优解的风险。最后,以川西某气田和鄂尔多斯盆地某气田为背景,进行了多任务点多无人机巡检调度的仿真。仿真结果表明,改进后的遗传算法相比于传统遗传算法和蚁群算法,在计算巡检无人机调度方案时,平均成本分别节约了17.1%和11.3%。 展开更多
关键词 巡检无人机 气田 任务调度 改进遗传算法
在线阅读 下载PDF
面向轨道威胁规避的对地观测卫星自主任务调度
16
作者 陈兴文 杨佳鸣 +1 位作者 邱剑彬 王桐 《空间控制技术与应用》 北大核心 2025年第4期78-87,共10页
本文研究了面向轨道威胁规避的对地观测卫星成像任务自主调度问题.针对当前日益严峻的空间态势,分析了卫星面临轨道威胁的典型场景.根据轨道威胁的紧急程度和规避截止时间,建立了可在成像任务序列中插入威胁规避的卫星自主任务调度优化... 本文研究了面向轨道威胁规避的对地观测卫星成像任务自主调度问题.针对当前日益严峻的空间态势,分析了卫星面临轨道威胁的典型场景.根据轨道威胁的紧急程度和规避截止时间,建立了可在成像任务序列中插入威胁规避的卫星自主任务调度优化模型,旨在最大化成像任务与规避任务的总收益,从而尽可能减小威胁规避对成像任务执行的干扰.提出一种基于强化学习的自学习遗传算法求解调度问题.在遗传算法中,采用二进制方式将任务决策变量编码为染色体,通过随机生成初始种群,结合随机双点交叉操作、基于交换突变法的变异操作和基于精英保留策略的选择机制,对调度空间进行有效搜索以逼近最优解.考虑到交叉概率和变异概率对算法性能具有显著影响,且手动设定参数存在困难,引入强化学习机制以实现参数的自适应调整.设计了强化学习中的状态表示、动作选择策略和奖励函数,并提出了一种融合SARSA与Q-learning算法的两阶段学习策略,两者根据设定的转换条件实现动态切换.仿真验证了所提算法在面对成像与规避任务冲突时的调度性能,结果表明算法能够有效实现两类任务收益的权衡,体现出良好的调度灵活性与稳定性. 展开更多
关键词 对地观测卫星 轨道威胁 任务调度 遗传算法 强化学习
在线阅读 下载PDF
基于改进IGA的多品种变批量智能车间调度
17
作者 刘晋飞 刘乙涵 +1 位作者 陈明 黄华 《现代制造工程》 北大核心 2025年第4期1-10,共10页
针对多品种、变批量的高复杂度智能制造场景,频繁更换刀具、夹具及工装等情况造成的实际生产调度和理论生产调度脱节的问题,定义了两个参量,即机器准备时间(Machine Preparation Duration,MPD)和机器加工系数(Machine Processing Coeffi... 针对多品种、变批量的高复杂度智能制造场景,频繁更换刀具、夹具及工装等情况造成的实际生产调度和理论生产调度脱节的问题,定义了两个参量,即机器准备时间(Machine Preparation Duration,MPD)和机器加工系数(Machine Processing Coefficient,MPC),以最小化最大完工时间、机器总时间负荷和机器总准备时间为目标函数,建立了引入MPC参数的多品种、变批量智能车间调度数学模型;设计了融合非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-Ⅱ,NSGA-Ⅱ)和免疫遗传算法(Immune Genetic Algorithm,IGA)的非支配免疫遗传算法(Non-dominated Sorting Immune Genetic Algorithm-Ⅱ,NSIGA-Ⅱ)来求解此类问题。该算法采用多种方式进行初始化,提出了一种综合考虑非支配排序和目标函数值大小的得分策略来筛选优秀个体,同时为了提高种群的多样性,引入种群分层和自适应交叉突变的策略。最后,通过多组对比实验验证了该算法的有效性以及在探索最优解时具有稳定性好、解质量高等优点。 展开更多
关键词 机器准备时间 非支配排序算法 免疫遗传算法 智能车间调度
在线阅读 下载PDF
基于多染色体编码遗传算法的多星成像与数传耦合规划方法
18
作者 刘佳 秦嘉豪 +2 位作者 李瀛搏 姚远 徐明 《宇航学报》 北大核心 2025年第3期616-630,共15页
针对对地观测卫星集群的大范围成像与数据下传耦合规划,提出了一种融合结构体编码与多层编码的多染色体遗传算法,实现了在复杂约束条件下对多个目标的同时优化。算法建立了成像与数传任务的约束满足模型,优化了卫星的拼幅成像与数据传... 针对对地观测卫星集群的大范围成像与数据下传耦合规划,提出了一种融合结构体编码与多层编码的多染色体遗传算法,实现了在复杂约束条件下对多个目标的同时优化。算法建立了成像与数传任务的约束满足模型,优化了卫星的拼幅成像与数据传输方案,考虑了卫星姿态机动能力与多个区域的全覆盖需求。此外,采用多层编码方式,有效解决了成像与数传任务解空间映射关系。基于遗传算法的全局搜索机制显著提高了任务规划的效率。试验验证表明,在3颗太阳同步轨道卫星星座中,该算法实现了对超过5个大范围区域的全覆盖,卫星的能源和数据存储未超出约束上限;同时,单次规划的运行时间小于15 min,验证了其实用性和高效性。该方法有效解决了复杂任务的耦合规划问题,具有较强的工程应用价值。 展开更多
关键词 多星测运控 多星任务规划 多染色体编码遗传算法 成像与数传任务耦合规划
在线阅读 下载PDF
基于动态储位分配策略的自动化立库多目标优化
19
作者 陈娟 郑旺 +1 位作者 刘倩倩 鲁斌 《系统仿真学报》 北大核心 2025年第6期1435-1448,共14页
基于动态储位分配策略,以整库为优化主体,以满足安全性、合理性的货位分配目标,以满足各堆垛机作业时间最短、作业能耗最低的调度目标,构建二阶段优化模型。上下层均为典型多目标优化问题,上层模型的理想解将作为下层模型的初始条件。... 基于动态储位分配策略,以整库为优化主体,以满足安全性、合理性的货位分配目标,以满足各堆垛机作业时间最短、作业能耗最低的调度目标,构建二阶段优化模型。上下层均为典型多目标优化问题,上层模型的理想解将作为下层模型的初始条件。采用多目标遗传算法求解优化模型的理想解,并通过熵权法对各个目标分配权重。结果表明:在货物离散排布状态下动静态分配策略无明显差异,但聚合排布状态下动态分配策略对货位分配与堆垛机调度的综合优化效果明显优于静态分配,且货物质量影响整体优化效果;大质量情况下安全性优化效果更为显著而较小质量情况下合理性与堆垛机调度优化效果更为明显。 展开更多
关键词 自动化立体库 货位分配 调度优化 多目标优化 多目标遗传算法
在线阅读 下载PDF
不确定条件下装配式建筑生产-运输集成调度双层优化
20
作者 程鸿群 张晴 +4 位作者 张慧 于永夏 丁玲 周明睿 李晓慧 《同济大学学报(自然科学版)》 北大核心 2025年第10期1624-1636,共13页
从构件供应商角度出发,研究了不确定条件下装配式建筑生产-运输集成调度,建立了以成本-满意度为目标的多流水线双层优化模型。采用模糊数描述构件生产加工时间和运输时间、安装时间窗的不确定性。在上层模型中,以多条流水线生产-运输总... 从构件供应商角度出发,研究了不确定条件下装配式建筑生产-运输集成调度,建立了以成本-满意度为目标的多流水线双层优化模型。采用模糊数描述构件生产加工时间和运输时间、安装时间窗的不确定性。在上层模型中,以多条流水线生产-运输总成本最小为目标,采用遗传算法进行订单流水线分配;在下层模型中,以模糊悲观准则确定满意度最大为目标,采用自适应贪婪禁忌遗传算法(AGTGA)进行单条流水线生产-运输集成调度。上层决策方案与下层决策方案不断迭代实现不确定条件下装配式建筑生产-运输集成调度优化方案。结果表明,AGTGA相比于遗传算法、迭代贪婪遗传算法表现出较好的性能,能实现在不确定条件下上下层模型的最优目标,且能确定装配式建筑生产-运输集成调度的最优方案。 展开更多
关键词 装配式建筑 双层优化模型 集成调度 自适应贪婪禁忌遗传算法 模糊数
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部