In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the...In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the networks presents uneven distribution.To achieve energy balance in networks,an energy consumption balancing optimization algorithm of LEO networks based on distance energy factor(DEF)is proposed.The DEF is defined as the function of the inter-satellite link dis-tance and the cumulative network energy consumption ratio.According to the minimum sum of DEF on inter-satellite links,an energy consumption balancing algorithm based on DEF is pro-posed,which can realize dynamic traffic transmission optimiza-tion of multiple traffic services.It can effectively reduce the energy consumption pressure of core nodes with high energy consumption in the network,make full use of idle nodes with low energy consumption,and optimize the energy consumption dis-tribution of the whole network according to the continuous itera-tions of each traffic service flow.Simulation results show that,compared with the traditional shortest path algorithm,the pro-posed method can improve the balancing performance of nodes by 75%under certain traffic pressure,and realize the optimiza-tion of energy consumption balancing of the whole network.展开更多
In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter spli...In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.展开更多
In order to improve prediction accuracy of the grey prediction model and forecast China energy consumption and production in a short term, this paper proposes a novel com- prehensively optimized GM(1,1) model, also ...In order to improve prediction accuracy of the grey prediction model and forecast China energy consumption and production in a short term, this paper proposes a novel com- prehensively optimized GM(1,1) model, also named COGM(1,1), based on the grey modeling mechanism. First, the relationship of the background value formula and its whitenization equation is analyzed and a new method optimizing background values is proposed to eliminate systemic errors in the modeling process. Second, the solving process of the new model is derived. For parameter estimation, a set of auxiliary parameters are used to change grey equation's form. Then, original parameters are re- stored by an equations system. After solving the whitenization equation, initial value in time response function is established by least errors criteria. Finally, a numerical case and comparison with other grey prediction models are made to testify the new model's effectiveness, and the computational results show that the COGM(1,1) model has a better property and achieves higher precision. The new model is used to forecast China energy con- sumption and production, and the ability of energy self-sufficiency is further analyzed. Results indicate that gaps between consump- tion and production in future are predicted to decline.展开更多
A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2...A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.展开更多
Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive venti...Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.展开更多
The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are ...The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.展开更多
China has long been a coal-based energyconsumption country.The coal's combustion process andits particle size are closely related.Because there are stilldifficulties in understanding and mastering the energyconsum...China has long been a coal-based energyconsumption country.The coal's combustion process andits particle size are closely related.Because there are stilldifficulties in understanding and mastering the energyconsumption of comminution,the economic fineness tobalance comminution and burning is mainly obtainedaccording to experience.With the increasingly wide andextensive use of coal,the energy consumption of coalcomminution has been paid more and more attention.Inthis paper,the research on energy consumption ofcomminution is analyzed and summarized to provide areference for the energy consumption of coalcomminution.展开更多
With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were s...With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.展开更多
Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new chal...Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.展开更多
The existing studies on the pelleting process were reviewed, and then the forming process of pelleting was introduced. Furthermore, the models describing the production yield and energy consumption of pelleting were p...The existing studies on the pelleting process were reviewed, and then the forming process of pelleting was introduced. Furthermore, the models describing the production yield and energy consumption of pelleting were presented. Based on the models, the influence of the pelleting structure parameters, die speed on the production yield and energy consumption were discussed. The results showed that larger pellet mill was preferred and the proper speed of the die should be selected to increase the production yield and reduce the energy consumption.展开更多
The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required ...The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that th...Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that the sensors can cover the area of interest.Due to the limited battery resources of sensors,there is a tradeoff between the energy consumption and tracking accuracy.To solve this problem,this paper proposes an energy efficient tracking algorithm.Based on the cooperation of dispatchers,sensors in the area are scheduled to switch their working mode to track the target.Since energy consumed in active mode is higher than that in monitoring or sleeping mode,for each sampling interval,a minimum set of sensors is woken up based on the select mechanism.Meanwhile,other sensors keep in sleeping mode.Performance analysis and simulation results show that the proposed algorithm provides a better performance than other existing approaches.展开更多
The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterpris...The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.展开更多
Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize th...Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize the resource utilization of magnesium slag(MS)and blast furnace slag(BFS),the effects of different contents of MS and BFS as partial CSs on the deformation and energy characteristics of cemented tailings backfill on different curing ages(3,7,and 28 d)were discussed.Meanwhile,the destabilization failure energy criterion of the backfill was established from the direction of energy change.The results show that the strength of all backfills increased with increasing curing age,and the strengths of the backfills exceeded 1.342 MPa on day 28.The backfill with 50%BFS+50%cement has the best performance in mechanical properties(the maximum strength can reach 6.129 MPa)and is the best choice among these CS combinations.The trend in peak strain and elastic modulus of the backfill with increasing curing age may vary depending on the CS combination.The energy index at peak stress of the backfill with BFS as a partial CS was significantly higher than that of the backfill under other CS combinations.In contrast,the enhancement of the energy index when MS was used as a partial CS was not as significant as BFS.Sharp changes in the energy consumption ratio after continuous smooth changes can be used as a criterion for destabilization and failure of the backfill.The research results can provide guidance for the application of MS and BFS as partial CSs in mine filling.展开更多
The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica...The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.展开更多
Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem ...Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.展开更多
How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data cente...How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center.展开更多
To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity ...To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.展开更多
Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting hea...Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.展开更多
基金supported by the National Key Research and Development Program(2021YFB2900604).
文摘In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the networks presents uneven distribution.To achieve energy balance in networks,an energy consumption balancing optimization algorithm of LEO networks based on distance energy factor(DEF)is proposed.The DEF is defined as the function of the inter-satellite link dis-tance and the cumulative network energy consumption ratio.According to the minimum sum of DEF on inter-satellite links,an energy consumption balancing algorithm based on DEF is pro-posed,which can realize dynamic traffic transmission optimiza-tion of multiple traffic services.It can effectively reduce the energy consumption pressure of core nodes with high energy consumption in the network,make full use of idle nodes with low energy consumption,and optimize the energy consumption dis-tribution of the whole network according to the continuous itera-tions of each traffic service flow.Simulation results show that,compared with the traditional shortest path algorithm,the pro-posed method can improve the balancing performance of nodes by 75%under certain traffic pressure,and realize the optimiza-tion of energy consumption balancing of the whole network.
基金Projects(50674107, 10472134, 50490274) supported by the National Natural Science Foundation of China
文摘In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.
基金supported by the National Natural Science Foundation of China(710710777130106071371098)
文摘In order to improve prediction accuracy of the grey prediction model and forecast China energy consumption and production in a short term, this paper proposes a novel com- prehensively optimized GM(1,1) model, also named COGM(1,1), based on the grey modeling mechanism. First, the relationship of the background value formula and its whitenization equation is analyzed and a new method optimizing background values is proposed to eliminate systemic errors in the modeling process. Second, the solving process of the new model is derived. For parameter estimation, a set of auxiliary parameters are used to change grey equation's form. Then, original parameters are re- stored by an equations system. After solving the whitenization equation, initial value in time response function is established by least errors criteria. Finally, a numerical case and comparison with other grey prediction models are made to testify the new model's effectiveness, and the computational results show that the COGM(1,1) model has a better property and achieves higher precision. The new model is used to forecast China energy con- sumption and production, and the ability of energy self-sufficiency is further analyzed. Results indicate that gaps between consump- tion and production in future are predicted to decline.
基金Project(2012GK2025)supported by Science-Technology Plan Foundation of Hunan Province,ChinaProject(2013zzts039)supported by the Fundamental Research Funds for Central South University,China
文摘A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.
基金Project(RGPIN-2019-05824)supported by the Start-up Fund of Universitéde Sherbrooke and Discovery Grants of Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.
基金Project(2015SK1002) supported by Key Projects of Hunan Province Science and Technology Plan,China
文摘The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.
文摘China has long been a coal-based energyconsumption country.The coal's combustion process andits particle size are closely related.Because there are stilldifficulties in understanding and mastering the energyconsumption of comminution,the economic fineness tobalance comminution and burning is mainly obtainedaccording to experience.With the increasingly wide andextensive use of coal,the energy consumption of coalcomminution has been paid more and more attention.Inthis paper,the research on energy consumption ofcomminution is analyzed and summarized to provide areference for the energy consumption of coalcomminution.
基金Project(2011BAJ01B05) supported by the National Science and Technology Pillar Program during the Twelfth Five-year Plan Period of China
文摘With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.
文摘Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.
文摘The existing studies on the pelleting process were reviewed, and then the forming process of pelleting was introduced. Furthermore, the models describing the production yield and energy consumption of pelleting were presented. Based on the models, the influence of the pelleting structure parameters, die speed on the production yield and energy consumption were discussed. The results showed that larger pellet mill was preferred and the proper speed of the die should be selected to increase the production yield and reduce the energy consumption.
文摘The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金supported by the National Natural Science Foundation of China (60835001)
文摘Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that the sensors can cover the area of interest.Due to the limited battery resources of sensors,there is a tradeoff between the energy consumption and tracking accuracy.To solve this problem,this paper proposes an energy efficient tracking algorithm.Based on the cooperation of dispatchers,sensors in the area are scheduled to switch their working mode to track the target.Since energy consumed in active mode is higher than that in monitoring or sleeping mode,for each sampling interval,a minimum set of sensors is woken up based on the select mechanism.Meanwhile,other sensors keep in sleeping mode.Performance analysis and simulation results show that the proposed algorithm provides a better performance than other existing approaches.
基金Project(1301021018) supported by Science and Technology Research Project of Anhui Province,China
文摘The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.
基金Projects(52274108,U2341265)supported by the National Natural Science Foundation of ChinaProject(2022YFC2904103)supported by the National Key Research and Development Program of China。
文摘Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize the resource utilization of magnesium slag(MS)and blast furnace slag(BFS),the effects of different contents of MS and BFS as partial CSs on the deformation and energy characteristics of cemented tailings backfill on different curing ages(3,7,and 28 d)were discussed.Meanwhile,the destabilization failure energy criterion of the backfill was established from the direction of energy change.The results show that the strength of all backfills increased with increasing curing age,and the strengths of the backfills exceeded 1.342 MPa on day 28.The backfill with 50%BFS+50%cement has the best performance in mechanical properties(the maximum strength can reach 6.129 MPa)and is the best choice among these CS combinations.The trend in peak strain and elastic modulus of the backfill with increasing curing age may vary depending on the CS combination.The energy index at peak stress of the backfill with BFS as a partial CS was significantly higher than that of the backfill under other CS combinations.In contrast,the enhancement of the energy index when MS was used as a partial CS was not as significant as BFS.Sharp changes in the energy consumption ratio after continuous smooth changes can be used as a criterion for destabilization and failure of the backfill.The research results can provide guidance for the application of MS and BFS as partial CSs in mine filling.
基金Project(60873081)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787)supported by Program for New Century Excellent Talents in UniversityProject(11JJ1012)supported by the Natural Science Foundation of Hunan Province,China
文摘The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.
文摘Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.
基金supported by the National Natural Science Foundation of China(6120200461272084)+9 种基金the National Key Basic Research Program of China(973 Program)(2011CB302903)the Specialized Research Fund for the Doctoral Program of Higher Education(2009322312000120113223110003)the China Postdoctoral Science Foundation Funded Project(2011M5000952012T50514)the Natural Science Foundation of Jiangsu Province(BK2011754BK2009426)the Jiangsu Postdoctoral Science Foundation Funded Project(1102103C)the Natural Science Fund of Higher Education of Jiangsu Province(12KJB520007)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(yx002001)
文摘How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center.
基金Project(2007AA01Z224) supported by National High-Tech Research and Development Program of China
文摘To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.
基金Project(50875265) supported by the National Natural Science Foundation of ChinaProject(20080440992) supported by the Postdoctoral Science Foundation of ChinaProject(2009SK3159) supported by the Technology Support Plan of Hunan Province,China
文摘Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.