Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss o...Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights.展开更多
A comparative study on the laser performance between bonding and non-bonding Er,Pr:GYSGG rods side-pumped by 970-nm laser diodes(LDs) is conducted for the thermal lensing compensation. The analyses of the thermal dist...A comparative study on the laser performance between bonding and non-bonding Er,Pr:GYSGG rods side-pumped by 970-nm laser diodes(LDs) is conducted for the thermal lensing compensation. The analyses of the thermal distribution and thermal focal length show that the bonding rod possesses a high cooling efficiency and weak thermal lensing effect compared with the conventional Er,Pr:GYSGG rod. Moreover, the laser characteristics of maximum output power, slope efficiency, and laser beam quality of the bonding rod with concave end-faces operated at 2.79 μm are improved under the high-repetition-rate operation. A maximum output power of 13.96 W is achieved at 150-Hz and 200-μs pulse width,corresponding to a slope efficiency of 17.7% and an electrical-to-optical efficiency of 12.9%. All results suggest that the combination of thermal bonding and concave end-face is a suitable structure for thermal lensing compensation.展开更多
基金the Independent Research of the State Key Laboratory of Coal Resources and Mine Safety(No. SKLCRSM09X02)the Open Research Fund of the State Key Laboratory of Coal Resources and Mine Safety(No.08KF12)the Graduate Students of Jiangsu Province Innovation Program Funded Projects(No.CX09B_120Z) for their financial support
文摘Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51872290,51702322,and 51802307)the National Key Research and Development Program of China(Grant No.2016YFB1102301)
文摘A comparative study on the laser performance between bonding and non-bonding Er,Pr:GYSGG rods side-pumped by 970-nm laser diodes(LDs) is conducted for the thermal lensing compensation. The analyses of the thermal distribution and thermal focal length show that the bonding rod possesses a high cooling efficiency and weak thermal lensing effect compared with the conventional Er,Pr:GYSGG rod. Moreover, the laser characteristics of maximum output power, slope efficiency, and laser beam quality of the bonding rod with concave end-faces operated at 2.79 μm are improved under the high-repetition-rate operation. A maximum output power of 13.96 W is achieved at 150-Hz and 200-μs pulse width,corresponding to a slope efficiency of 17.7% and an electrical-to-optical efficiency of 12.9%. All results suggest that the combination of thermal bonding and concave end-face is a suitable structure for thermal lensing compensation.