To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the i...To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively.展开更多
Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms...Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.展开更多
The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorith...The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.展开更多
文摘To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively.
基金supported by the National Natural Science Foundation of China(71991464,71921001)Fundamental Research Funds for the Central Universities,General Program(WK2040000053)Key Program(YD2040002027)。
文摘Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.
基金Jiangsu Water Science and Technology Project(2021081)。
文摘The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.