期刊文献+
共找到1,802篇文章
< 1 2 91 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(emd) Ensemble emd(Eemd) Complete Eemd with adaptive noise(CEemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
2
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 empirical mode decomposition(emd) k-nearest neighbor(KNN) principal component analysis(PCA) time series
在线阅读 下载PDF
A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition 被引量:1
3
作者 符懋敬 庄建军 +3 位作者 侯凤贞 展庆波 邵毅 宁新宝 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期592-601,共10页
In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose th... In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals. 展开更多
关键词 ensemble empirical mode decomposition gait series peak detection intrinsic mode functions
在线阅读 下载PDF
Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating 被引量:1
4
作者 王文波 张晓东 +4 位作者 常毓禅 汪祥莉 王钊 陈希 郑雷 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期400-406,共7页
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a... In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. 展开更多
关键词 independent component analysis empirical mode decomposition chaotic signal DENOISING
在线阅读 下载PDF
Empirical mode decomposition of multiphase flows in porous media:characteristic scales and speed of convergence
5
作者 Nicolás Echebarrena Pablo D.Mininni Gustavo A.Moreno 《Petroleum Science》 SCIE CAS CSCD 2020年第1期153-167,共15页
We apply a proper orthogonal decomposition(POD)to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium,to study water injection processe... We apply a proper orthogonal decomposition(POD)to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium,to study water injection processes in the production of hydrocarbon reservoirs.We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability.Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system.Finally,using numerical simulations with different viscosity ratios,we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not.This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes. 展开更多
关键词 TWO-PHASE flow empirical mode decomposition VISCOUS FINGERING POROUS media
在线阅读 下载PDF
Perfect Reconstructable Decimated One-Dimensional Empirical Mode Decomposition Filter Banks
6
作者 Min-Sung Koh Esteban Rodriguez-Marek 《Journal of Electronic Science and Technology》 CAS 2014年第2期196-200,共5页
This paper introduces decimated filter banks for the one-dimensional empirical mode decomposition (1D-EMD). These filter banks can provide perfect reconstruction and allow for an arbitrary tree structure. Since the ... This paper introduces decimated filter banks for the one-dimensional empirical mode decomposition (1D-EMD). These filter banks can provide perfect reconstruction and allow for an arbitrary tree structure. Since the EMD is a data driven decomposition, it is a very useful analysis instrument for non-stationary and non-linear signals. However, the traditional 1D-EMD has the disadvantage of expanding the data. Large data sets can be generated as the amount of data to be stored increases with every decomposition level. The 1D-EMD can be thought as having the structure of a single dyadic filter. However, a methodology to incorporate the decomposition into any arbitrary tree structure has not been reported yet in the literature. This paper shows how to extend the 1D-EMD into any arbitrary tree structure while maintaining the perfect reconstruction property. Furthermore, the technique allows for downsampling the decomposed signals. This paper, thus, presents a method to minimize the data-expansion drawback of the 1D-EMD by using decimation and merging the EMD coefficients. The proposed algorithm is applicable for any arbitrary tree structure including a full binary tree structure. 展开更多
关键词 Decimated empirical mode decomposition filter banks perfect reconstruction
在线阅读 下载PDF
Non-overshooting and Non-undershooting Cubic Spline Interpolation for Empirical Mode Decomposition
7
作者 袁晔 梅文博 +1 位作者 吴嗣亮 袁起 《Journal of Beijing Institute of Technology》 EI CAS 2008年第3期316-321,共6页
To suppress the overshoots and undershoots in the envelope fitting for empirical mode decomposition (EMD), an alternative cubic spline interpolation method without overshooting and undershooting is proposed. On the ... To suppress the overshoots and undershoots in the envelope fitting for empirical mode decomposition (EMD), an alternative cubic spline interpolation method without overshooting and undershooting is proposed. On the basis of the derived slope constraints of knots of a non-overshooting and non-undershooting cubic interpolant, together with "not-a-knot" conditions the cubic spline interpolants are constructed by replacing the requirement for equal second order derivatives at every knot with Brodlie' s derivative formula. Analysis and simulation experiments show that this approach can effectively avoid generating new extrema, shifting or exaggerating the existing ones in a signal, and thus significantly improve the decomposition performance of EMD. 展开更多
关键词 overshooting and undershooting cubic spline interpolation empirical mode decomposition
在线阅读 下载PDF
Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal
8
作者 Jun-Yao Wang Yue-Hong Dai Xia-Xi Si 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期257-269,共13页
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear... To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced. 展开更多
关键词 Complex vector method electromyography(EMG)signal empirical mode decomposition feature layer fusion series splicing method
在线阅读 下载PDF
基于SSA-IWT-EMD的滚动轴承故障诊断方法
9
作者 雷春丽 焦孟萱 +3 位作者 樊高峰 刘世超 薛林林 李建华 《北京航空航天大学学报》 北大核心 2025年第4期1152-1162,共11页
针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各... 针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各参数进行全局寻优,实现滚动轴承信号降噪。提出一种综合指标P对EMD产生的分量进行选取重构,突出信号的故障特征信息。采用包络谱分析实现轴承的故障诊断。仿真和实测结果验证了所提方法的有效性;同时与单一指标选取分量的方法及文献方法进行对比,说明了综合指标P和所提方法具有更强的降噪能力及特征提取能力,包络谱幅值及倍频成分更明显,可以更好地实现对滚动轴承的故障诊断。 展开更多
关键词 滚动轴承 改进阈值 综合指标 经验模态分解 故障诊断
在线阅读 下载PDF
优化FEEMD与相似度量的滚动轴承故障特征提取
10
作者 马军 李祥 +1 位作者 秦娅 熊新 《兵器装备工程学报》 北大核心 2025年第3期252-266,共15页
针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(n... 针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(northern goshawk optimization,NGO)确定FEEMD的模型参数后,利用优化后的FEEMD将滚动轴承振动信号分解为多个本征模态函数分量和残余项,融合形态波动一致性偏移距离(morphology fluctuation conformance deviation distance,MFCDD)指标筛选有效分量进行重构,最后对重构信号进行Hilbert包络解调,完成滚动轴承故障特征提取。试验结果表明,所提方法相比变分模态分解方法、峭度分量选取方法、改进的完备集合经验模态分解联合豪斯多夫距离与峭度值方法,信噪比分别平均提升了1.75、12.2639、2.0605 dB,均方根误差分别降低了0.0078、0.0430、0.0656,能够更加清晰、全面地提取出故障特征频率及其倍频。 展开更多
关键词 滚动轴承 故障特征提取 集合经验模态分解 相似性 北方苍鹰算法
在线阅读 下载PDF
基于EMD小波降噪的螺杆泵共振转速识别方法
11
作者 赵海洋 张宇 +2 位作者 张晓娟 袁瑜 张晨曦 《石油机械》 北大核心 2025年第5期102-109,共8页
螺杆泵抽油杆共振现象可导致驱动装置承载能力下降、油管与油池密封性降低、抽油杆偏磨断裂等事故,已成为影响安全生产运行的主要因素。在生产过程中可通过控制抽油杆工作转速以避免共振现象。而理论共振转速受实际工况影响存在计算结... 螺杆泵抽油杆共振现象可导致驱动装置承载能力下降、油管与油池密封性降低、抽油杆偏磨断裂等事故,已成为影响安全生产运行的主要因素。在生产过程中可通过控制抽油杆工作转速以避免共振现象。而理论共振转速受实际工况影响存在计算结果偏差问题。为此,提出了一种基于振动信号特征提取的螺杆泵共振转速识别方法。开展地面直驱螺杆泵共振转速振动测试,建立变转速工况振动信号数据集,通过引入评价方法——标准分数(Z-score),优选峭度因子作为共振转速特征识别指标,并在此基础上提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)小波的振动信号降噪方法,实现对螺杆泵共振状态特征信息的有效提取,从而提高抽油杆实际共振转速识别精度。研究结果可为螺杆泵的安全稳定运行提供技术支撑。 展开更多
关键词 地面直驱螺杆泵 共振转速 经验模态分解 软阈值小波降噪 特征提取
在线阅读 下载PDF
基于EMD和FFT的自适应X射线脉冲星信号降噪方法
12
作者 王璐 张爽 《电波科学学报》 北大核心 2025年第2期381-394,共14页
X射线脉冲星导航是一种具有发展潜力的深空探测技术,其导航精度主要受X射线脉冲信号到达时间精度影响;X射线脉冲星信号降噪技术有望为X射线脉冲星导航提供良好的信号支撑。在有效抑制噪声的基础上,如何最大限度保留X射线脉冲星信号细节... X射线脉冲星导航是一种具有发展潜力的深空探测技术,其导航精度主要受X射线脉冲信号到达时间精度影响;X射线脉冲星信号降噪技术有望为X射线脉冲星导航提供良好的信号支撑。在有效抑制噪声的基础上,如何最大限度保留X射线脉冲星信号细节信息,一直是X射线脉冲星信号降噪处理中的难点。在经验模态分解(empirical mode decomposition,EMD)阈值降噪中,混叠内蕴模态分量的个数、阈值函数和阈值是影响降噪效果的三个主要因素。本文利用快速傅里叶变换对混叠内蕴模态分量进行分析,据其频域稀疏度筛选出含噪声的高频混叠内蕴模态分量;针对阈值函数和阈值的选择问题,提出了利用复合评价指标选择出阈值函数和阈值估计方法的最优组合,并通过数值仿真验证了该方法的有效性。仿真和测试结果表明本文方法在脉冲星导航方面可能具有应用前景。 展开更多
关键词 脉冲星 经验模态分解(emd) 快速傅里叶变换(FFT) 复合评价指标(CEI) 信号降噪
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
13
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
14
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于ICEEMDAN-CNN的斜拉桥损伤识别方法研究
15
作者 刘杰 耿亚飞 +1 位作者 杨俊 王麒麟 《石家庄铁道大学学报(自然科学版)》 2025年第2期23-29,共7页
针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验... 针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验模态分解(CEEMDAN)的基础上,依据标准差特性推算合适的噪声源进行迭代更新,动态调整海量数据中的噪声水平并分解得到本征模态函数(IMF)分量;随后对IMF分量逐个进行最小二乘法非线性拟合,计算各个分量的Hurst指数用以筛选最佳IMF分量,为1D-CNN提供高质量的数据输入;细化调整卷积层结构与参数优化1D-CNN,提高模型对海量数据的泛化能力与计算效率,经训练后得到斜拉桥损伤识别模型;利用斜拉桥基准有限元模型提取多种工况数据,对斜拉桥损伤识别模型进行仿真分析。结果表明,ICEEMDAN-CNN模型在仿真分析时损伤定位精度为99.84%,损伤定量的最大误差为2.94%。 展开更多
关键词 斜拉桥 损伤识别方法 海量数据 一维卷积神经网络 改进完全自适应噪声集合经验模态分解
在线阅读 下载PDF
结合EMD和FWHT的构音障碍语音特征增强算法
16
作者 朱婷 段淑斐 +2 位作者 DINGAM Camille 梁慧芝 张卫 《声学技术》 北大核心 2025年第2期239-251,共13页
传统声学特征易忽略语音的非线性、非平稳特性并且不能同时提取患者声道、声带的病理特性,导致识别模型性能不佳。因此文章提出了一种结合经验模态分解和快速沃尔什-哈达玛变换的构音障碍语音特征增强算法。首先,采用快速傅里叶变换处... 传统声学特征易忽略语音的非线性、非平稳特性并且不能同时提取患者声道、声带的病理特性,导致识别模型性能不佳。因此文章提出了一种结合经验模态分解和快速沃尔什-哈达玛变换的构音障碍语音特征增强算法。首先,采用快速傅里叶变换处理语音后,引入经验模态分解自适应提取其本征模态函数;其次,进行快速沃尔什-哈达玛变换;接着,提取基于本征模态函数的统计学特征以及功率谱密度、伽马通频率倒谱系数的增强特征;最后,在UA Speech和TORGO数据库上进行病情分级研究,并引入了非平衡分类算法评估。结果表明,该算法对比传统特征在病理语音分级研究上是有效的,在考虑类间不平衡后,识别准确率至少提高了12.18个百分点。由此,该算法可以更充分表征构音障碍语音特性,对其非平衡性、非线性特性及缺乏同时表征声带和声道中局部病理信息的问题具有一定的改善作用。 展开更多
关键词 构音障碍 特征增强 经验模态分解 沃尔什-哈达玛变换 病理语音
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
17
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
18
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEemdAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于CEEMD-SE-PSR-BP的短期风速预测
19
作者 高晟扬 李法社 《太阳能学报》 北大核心 2025年第4期415-422,共8页
为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE... 为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE的特征中重组风速序列。继而,将各子序列的预测结果进行相空间重构,获取神经网络预测的输入输出样本。最后运用神经网络预测每个样本,并将所有预测结果累加。此外,还对风电场的实际运行数据进行试验,并将模型的预测结果与其他预测方法进行对比,实验结果显示出此模型在提高风速预测精度方面的显著优势。 展开更多
关键词 风速预测 样本熵 互补集合经验模态分解 相空间重构 神经网络 时间序列
在线阅读 下载PDF
滑坡位移CEEMD-CIWOA-BP预测模型
20
作者 余国强 侯克鹏 孙华芬 《有色金属(矿山部分)》 2025年第1期106-114,142,共10页
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量... 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。 展开更多
关键词 滑坡位移 互补集合经验模态分解 BP神经网络 改进鲸鱼优化算法 时间序列
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部