Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and ...Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.展开更多
In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spac...In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.展开更多
文摘Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.
基金supported by National Natural Science Foundation of China(No.11105063)
文摘In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.