磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到...磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到。频率分析显示,ULF波的周期、质子各向异性周期和EMIC波包的周期非常接近。MMS-4卫星在约1 h后经过附近空间区域,研究发现随着ULF波的幅度减弱,EMIC波包的准周期性也逐渐减弱。研究结果为ULF波在日侧外磁层调制质子各向异性从而产生周期性EMIC波包提供了完整的观测证据链。同时,观测结果进一步证明,这种ULF波调制的EMIC波包能够在大于2Re的空间尺度内发生,且能够持续存在于几个小时以上的时间尺度。展开更多
The gyroresonant interaction between electromagnetic ion cyclotron (EMIC) waves and energetic particles was studied in a multi-ion (H^+, He^+, and O^+) plasma. The minimum resonant energy Emin, resonant wave fr...The gyroresonant interaction between electromagnetic ion cyclotron (EMIC) waves and energetic particles was studied in a multi-ion (H^+, He^+, and O^+) plasma. The minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Daa were calculated at the center location of the symmetrical ring current: r ≈3.5RE with RE the Earth's radius. Emin is found to decrease rapidly from 10 MeV to a few keV with the increase in ca in three bands: H^+-band, He^+-band and O^+-band. Moreover, EMIC waves have substantial potential to scatter energetic (~100 keV) ions (mainly H^+ and He^+) into the loss cone and yield precipitation loss, suggesting that wave-particle interactions contribute to ring current decay.展开更多
文摘磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件。超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到。频率分析显示,ULF波的周期、质子各向异性周期和EMIC波包的周期非常接近。MMS-4卫星在约1 h后经过附近空间区域,研究发现随着ULF波的幅度减弱,EMIC波包的准周期性也逐渐减弱。研究结果为ULF波在日侧外磁层调制质子各向异性从而产生周期性EMIC波包提供了完整的观测证据链。同时,观测结果进一步证明,这种ULF波调制的EMIC波包能够在大于2Re的空间尺度内发生,且能够持续存在于几个小时以上的时间尺度。
基金Hong Kong SAR Government Research Grants Council Earmarked Grant Projects(#CUHK4333/00H#CUHK4326/01H+10 种基金#CUHK4259/03H#CUHK4715/06H#CUHK441609)香港中文大学Direct Grants(#2020662#2020745#2020871#2020933#2020994#2021014)的资助教育部人文社科青年基金项目(10YJCXLX005)上海市浦江人才计划资助
基金National Natural Science Foundation of China (Nos.40874076,40774078,40774079 and 40536029)the Special Fund for Public Welfare Industry (meteorology)GYHY200806072the Visiting Scholar Foundation of State Key Laboratory for Space Weather,Chinese Academy of Sciences
文摘The gyroresonant interaction between electromagnetic ion cyclotron (EMIC) waves and energetic particles was studied in a multi-ion (H^+, He^+, and O^+) plasma. The minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Daa were calculated at the center location of the symmetrical ring current: r ≈3.5RE with RE the Earth's radius. Emin is found to decrease rapidly from 10 MeV to a few keV with the increase in ca in three bands: H^+-band, He^+-band and O^+-band. Moreover, EMIC waves have substantial potential to scatter energetic (~100 keV) ions (mainly H^+ and He^+) into the loss cone and yield precipitation loss, suggesting that wave-particle interactions contribute to ring current decay.