According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput...According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.展开更多
鸡蛋新鲜度是反映鸡蛋内部品质的一个重要指标。为了能够实现鸡蛋新鲜度的快速无损检测,利用微型光纤光谱仪采集鸡蛋550~950nm的透射率光谱曲线,与鸡蛋的哈夫单位值进行了定量分析。通过不同的预处理方式分别结合偏最小二乘回归(parti...鸡蛋新鲜度是反映鸡蛋内部品质的一个重要指标。为了能够实现鸡蛋新鲜度的快速无损检测,利用微型光纤光谱仪采集鸡蛋550~950nm的透射率光谱曲线,与鸡蛋的哈夫单位值进行了定量分析。通过不同的预处理方式分别结合偏最小二乘回归(partial least squares regression,PLSR)与支持向量回归(support vector regression,SVR)建立模型,比较了不同模型的预测结果,发现一阶微分结合SVR能够实现较好地预测,且利用SVR建模要优于PLSR。为了提高运算效率,减少无用信息对建模的不良影响,分别利用线性降维主成分分析法(principal component analysis,PCA)与非线性降维局部线性嵌入(locally linear embedding,LLE)对一阶微分后的光谱数据降维,比较两种降维方法的预测效果,得出了LLE降维要优于PCA降维,其训练集和预测集的相关系数与均方根误差分别为92.2%,7.21和91.1%,8.80,训练集交叉验证的均方根误差相比减少了0.79。实验结果表明,利用局部线性嵌入结合支持向量回归进行非线性建模,能够提高鸡蛋新鲜度的预测能力,表明该方法对鸡蛋新鲜度的可见/近红外光谱检测可行。展开更多
用于工业过程控制、通信和航天器上的嵌入式计算机对软、硬件的可靠性要求极高。对于软件较为复杂的嵌入式计算机系统,必须采用高可靠的实时多任务操作系统。处于操作系统和硬件之间的板级支持包(BSP Board Support Packge)的设计是一...用于工业过程控制、通信和航天器上的嵌入式计算机对软、硬件的可靠性要求极高。对于软件较为复杂的嵌入式计算机系统,必须采用高可靠的实时多任务操作系统。处于操作系统和硬件之间的板级支持包(BSP Board Support Packge)的设计是一个复杂的过程,该文介绍了基于VxWorks操作系统的板级支持包以及板级支持包设计、调试中的问题。展开更多
随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SV...随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。展开更多
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.
文摘鸡蛋新鲜度是反映鸡蛋内部品质的一个重要指标。为了能够实现鸡蛋新鲜度的快速无损检测,利用微型光纤光谱仪采集鸡蛋550~950nm的透射率光谱曲线,与鸡蛋的哈夫单位值进行了定量分析。通过不同的预处理方式分别结合偏最小二乘回归(partial least squares regression,PLSR)与支持向量回归(support vector regression,SVR)建立模型,比较了不同模型的预测结果,发现一阶微分结合SVR能够实现较好地预测,且利用SVR建模要优于PLSR。为了提高运算效率,减少无用信息对建模的不良影响,分别利用线性降维主成分分析法(principal component analysis,PCA)与非线性降维局部线性嵌入(locally linear embedding,LLE)对一阶微分后的光谱数据降维,比较两种降维方法的预测效果,得出了LLE降维要优于PCA降维,其训练集和预测集的相关系数与均方根误差分别为92.2%,7.21和91.1%,8.80,训练集交叉验证的均方根误差相比减少了0.79。实验结果表明,利用局部线性嵌入结合支持向量回归进行非线性建模,能够提高鸡蛋新鲜度的预测能力,表明该方法对鸡蛋新鲜度的可见/近红外光谱检测可行。
文摘用于工业过程控制、通信和航天器上的嵌入式计算机对软、硬件的可靠性要求极高。对于软件较为复杂的嵌入式计算机系统,必须采用高可靠的实时多任务操作系统。处于操作系统和硬件之间的板级支持包(BSP Board Support Packge)的设计是一个复杂的过程,该文介绍了基于VxWorks操作系统的板级支持包以及板级支持包设计、调试中的问题。
文摘随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。