This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co...Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.展开更多
This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower a...This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failur...An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failure parameters.A key technical issue is how to deal with the actuator failure uncertainties such as failure pattern,time and values.A complete parametrization covering all possible failures is used to solve this issue for adaptive parameter estimation.A simultaneous mapping from the estimated system/failure parameters to the controller parameters is employed to make the control system capable of ensuring the desired system performance under failures,which is verified by simulation results.展开更多
This paper investigates the problem of formation tracking control for multiple flight vehicle(MFV) system considering actuator saturation constraints. First, the formation tracking control model is established. Then, ...This paper investigates the problem of formation tracking control for multiple flight vehicle(MFV) system considering actuator saturation constraints. First, the formation tracking control model is established. Then, the problem of formation control of the MFV system is converted to the convergence of a dynamical system, which is obtained by using the differential geometry theory.A class of saturation functions is introduced, and on this basis a second-order finite-time formation control protocol is developed.With the help of the homogeneous theory and Lasalle's invariance principle, it is theoretically proved that the designed formation protocol could complete the formation task in finite time, and the control inputs are shown to remain within their available actuating limits. Finally, simulations are performed to verify the effectiveness of the scheme.展开更多
A platform named EMECS based on embedded Ethernet control system is implemented.A PC running Fedora 6(Linux2.6)works as a central controller.A kit running Linux 2.4 based on Samsung2410A(ARM920t core)works as a remote...A platform named EMECS based on embedded Ethernet control system is implemented.A PC running Fedora 6(Linux2.6)works as a central controller.A kit running Linux 2.4 based on Samsung2410A(ARM920t core)works as a remote controller and a DC motor(ESCA P28HSL18-219/204)made by Portescap Company works as a plant.Firstly,system modeling is presented by analyzing the characteristics of Ethernet and the plant,based on a proposed delay measurement method.Secondly,implementation of the system including program and hardware is described in detail.And then the delay is measured and the control results of the system are tested in three cases with different network loads as well.The platform is proved to have flexibility of running different control algorithms and extensibility of adding nodes.Experiment results demonstrate the validity of the system.展开更多
Magnetostriction is a phenomenon in which a magneti c field is used to produce a change in size of some materials. This property has b een known in elements such as nickel, iron and cobalt. Because the rare-ear th all...Magnetostriction is a phenomenon in which a magneti c field is used to produce a change in size of some materials. This property has b een known in elements such as nickel, iron and cobalt. Because the rare-ear th alloy Terfenol-D can offer much larger strains than nickel, iron, cobalt, an d other smart materials such as piezoelectric materials, it is called giant magn etostrictive material. Making use of the giant magnetostrictive material, the gi ant magnetostrictive actuator has higher bandwidth and rapider response than oth er actuators. So it is widely used in active vibration control, especially in lo w frequency stage. In this paper, a turning vibration control system is develope d. The system has an actuator clamped in a flexor that is rigid in the feed and main cutting force directions, yet is flexible in the radial direction. The stru cture of the giant magnetostrictive actuator is developed after magnetic circuit and some structure parameter are calculated. According to the turning frequency , the transient and stable-state output of the giant magnetostrictive actuator is measured. The test result demonstrated that the actuator responses the input rapidly, and the actuator has perfect stable-state and transient output charact eristic. The characteristic includes the stable-state output linearity, repeata bility and transient delay between output displacement and input current.展开更多
A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric...A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization.展开更多
A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stoc...A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.展开更多
An adaptive actuator failure compensation scheme is proposed for attitude tracking control of spacecraft with unknown disturbances and uncertain actuator failures. A new feature of this adaptive control scheme is the ...An adaptive actuator failure compensation scheme is proposed for attitude tracking control of spacecraft with unknown disturbances and uncertain actuator failures. A new feature of this adaptive control scheme is the adaptation of the failure pattern parameter estimates, as well as the failure signal parameter estimates, for direct adaptive actuator failure compensation. Based on an adaptive backstepping control design, the estimates of the disturbance parameters are used to solve the disturbance rejection problem. The unknown disturbances are compensated completely with the stability of the whole closed-loop system. The scheme is not only able to accommodate uncertain actuator failures, but also robust against unknown external disturbances. Simulation results verify the desired adaptive actuator failure compensation performance.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by the National Nature Science Foundation of China(61304223)the Aeronautical Science Foundation of China(2016ZA52009)the Research Fund for the Doctoral Program of Higher Education of China(20123218120015)
基金supported by the National Natural Science Foundation of China(11372073,11072061)
文摘Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.
基金supported by the National Natural Science Foundation of China(6082530390916005)+3 种基金the Aviation Science Fund of China (2009ZA77001)the Foundation for the Author of National Excellent Doctoral Dissertation of China(2007B4)the Key Laboratory Opening Funding(HIT.KLOF.2009099)the Key Laboratory of Integrated Automation for the Process Industry(Northeastern University),Ministry of Education
文摘This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金supported by the US National Science Foundation (ECS0601475)the National Natural Science Foundation of China (60904042)
文摘An adaptive actuator failure compensation control scheme is developed using an indirect adaptive control method,by calculating the controller parameters from adaptive estimates of system parameters and actuator failure parameters.A key technical issue is how to deal with the actuator failure uncertainties such as failure pattern,time and values.A complete parametrization covering all possible failures is used to solve this issue for adaptive parameter estimation.A simultaneous mapping from the estimated system/failure parameters to the controller parameters is employed to make the control system capable of ensuring the desired system performance under failures,which is verified by simulation results.
基金Supported by Program for New Century Excellent Talents in University (NCET-04-0283), the Funds for Creative Research Groups of China (60521003), Program for Changjiang Scholars and Innovative Research Team in University (IRT0421), the State Key Program of National Natural Science of China (60534010), National Natural Science Foundation of China (60674021), the Funds of Doctoral Program of Ministry of Education of China (20060145019), and the 111 Proiect (B08015)
基金supported by the National Natural Science Foundation of China (61903099)the Natural Science Foundation of Heilongjiang Province (LH2020F025)the Fundamental Research Funds for the Central Universities (3072020CF0406)。
文摘This paper investigates the problem of formation tracking control for multiple flight vehicle(MFV) system considering actuator saturation constraints. First, the formation tracking control model is established. Then, the problem of formation control of the MFV system is converted to the convergence of a dynamical system, which is obtained by using the differential geometry theory.A class of saturation functions is introduced, and on this basis a second-order finite-time formation control protocol is developed.With the help of the homogeneous theory and Lasalle's invariance principle, it is theoretically proved that the designed formation protocol could complete the formation task in finite time, and the control inputs are shown to remain within their available actuating limits. Finally, simulations are performed to verify the effectiveness of the scheme.
基金Supported by National Natural Science Foundation of China(60974052) Program for Changjiang Scholars and Innovative Research Team in University (IRT0949) Beijing Jiaotong University Research Program (RCS2008ZT002 2009JBZ001 2009RC008)
基金Supported by CSC(Chinese Scholarship)(Liu Jin Chu[2006]3074)
文摘A platform named EMECS based on embedded Ethernet control system is implemented.A PC running Fedora 6(Linux2.6)works as a central controller.A kit running Linux 2.4 based on Samsung2410A(ARM920t core)works as a remote controller and a DC motor(ESCA P28HSL18-219/204)made by Portescap Company works as a plant.Firstly,system modeling is presented by analyzing the characteristics of Ethernet and the plant,based on a proposed delay measurement method.Secondly,implementation of the system including program and hardware is described in detail.And then the delay is measured and the control results of the system are tested in three cases with different network loads as well.The platform is proved to have flexibility of running different control algorithms and extensibility of adding nodes.Experiment results demonstrate the validity of the system.
文摘Magnetostriction is a phenomenon in which a magneti c field is used to produce a change in size of some materials. This property has b een known in elements such as nickel, iron and cobalt. Because the rare-ear th alloy Terfenol-D can offer much larger strains than nickel, iron, cobalt, an d other smart materials such as piezoelectric materials, it is called giant magn etostrictive material. Making use of the giant magnetostrictive material, the gi ant magnetostrictive actuator has higher bandwidth and rapider response than oth er actuators. So it is widely used in active vibration control, especially in lo w frequency stage. In this paper, a turning vibration control system is develope d. The system has an actuator clamped in a flexor that is rigid in the feed and main cutting force directions, yet is flexible in the radial direction. The stru cture of the giant magnetostrictive actuator is developed after magnetic circuit and some structure parameter are calculated. According to the turning frequency , the transient and stable-state output of the giant magnetostrictive actuator is measured. The test result demonstrated that the actuator responses the input rapidly, and the actuator has perfect stable-state and transient output charact eristic. The characteristic includes the stable-state output linearity, repeata bility and transient delay between output displacement and input current.
基金Project(50390063) supported by the National Natural Science Foundation of China
文摘A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization.
基金supported by the National Natural Science Foundation of China(61773387)the China Postdoctoral Fund(2016M5909712017T100770)。
文摘A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.
基金supported by the National Natural Science Foundation of China(6137413061374116)+2 种基金the Nanjing University of Aeronautics and Astronautics Research Foundation(NP2013303)the Funding of Jiangsu Innovation Program for Graduate(CXLX13 157)the Fundamental Research Funds for the Central Universities
文摘An adaptive actuator failure compensation scheme is proposed for attitude tracking control of spacecraft with unknown disturbances and uncertain actuator failures. A new feature of this adaptive control scheme is the adaptation of the failure pattern parameter estimates, as well as the failure signal parameter estimates, for direct adaptive actuator failure compensation. Based on an adaptive backstepping control design, the estimates of the disturbance parameters are used to solve the disturbance rejection problem. The unknown disturbances are compensated completely with the stability of the whole closed-loop system. The scheme is not only able to accommodate uncertain actuator failures, but also robust against unknown external disturbances. Simulation results verify the desired adaptive actuator failure compensation performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.