In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that th...In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that the error estimates in L;-norm for the solution and the flux are O(h;|log h|)and O(h|log h|;),respectively.In numerical experiments,the successive substitution iterative methods are used to solve the LDG schemes.Numerical results verify the efficiency and accuracy of the method.展开更多
The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for ellipti...The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for elliptic and parabolic problems with interior boundaries or interfaces of discontinuities of material properties or solutions. Second order accuracy is achieved in space and time for both stationary and moving interface problems. The method is conservative for elliptic and parabolic problems with fixed interfaces. Based on this method, a front tracking algorithm for the Stefan problem has been developed. The accuracy of the method is measured through comparison with exact solution to a two-dimensional Stefan problem. The algorithm has been used for the study of melting and solidification problems.展开更多
基金Supported by National Natural Science Foundation of China(11571002,11461046)Natural Science Foundation of Jiangxi Province,China(20151BAB211013,20161ACB21005)+2 种基金Science and Technology Project of Jiangxi Provincial Department of Education,China(150172)Science Foundation of China Academy of Engineering Physics(2015B0101021)Defense Industrial Technology Development Program(B1520133015)
文摘In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that the error estimates in L;-norm for the solution and the flux are O(h;|log h|)and O(h|log h|;),respectively.In numerical experiments,the successive substitution iterative methods are used to solve the LDG schemes.Numerical results verify the efficiency and accuracy of the method.
基金supported by the U.S.Department of Energy under Contract No.DE-AC02-98CH10886 and by the State of New York
文摘The embedded boundary method for solving elliptic and parabolic problems in geometrically complex domains using Cartesian meshes by Johansen and Colella (1998, J. Comput. Phys. 147, 60) has been extended for elliptic and parabolic problems with interior boundaries or interfaces of discontinuities of material properties or solutions. Second order accuracy is achieved in space and time for both stationary and moving interface problems. The method is conservative for elliptic and parabolic problems with fixed interfaces. Based on this method, a front tracking algorithm for the Stefan problem has been developed. The accuracy of the method is measured through comparison with exact solution to a two-dimensional Stefan problem. The algorithm has been used for the study of melting and solidification problems.