期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation 被引量:2
1
作者 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4059-4064,共6页
The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the tes... The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the test and trial functions. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for hyperbolic problems needs only the scattered nodes instead of meshing the domain of the problem. It neither requires any element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for two-dimensional hyperbolic problems is investigated by two numerical examples in this paper. 展开更多
关键词 element-free galerkin (efg method meshless method hyperbolic problem
在线阅读 下载PDF
An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
2
作者 时婷玉 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期156-161,共6页
A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics an... A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method. 展开更多
关键词 element-free galerkin (efg method meshless method generalized Fisher equation (GFE)
在线阅读 下载PDF
An element-free Galerkin(EFG) method for numerical solution of the coupled Schrdinger-KdV equations
3
作者 刘永庆 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期79-87,共9页
The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditiona... The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme. 展开更多
关键词 element-free galerkin (efg method meshless method the coupled Schr6dinger-KdV equations
在线阅读 下载PDF
Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations
4
作者 Ge Hon-Xia Liu Yong-Qing Cheng Rong-Jun 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期46-51,共6页
The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared w... The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α(0 〈 α≤ 1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions. 展开更多
关键词 element-free galerkin (efg method meshless method time fractional partial differential equations
在线阅读 下载PDF
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 被引量:15
5
作者 王聚丰 孙凤欣 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期53-59,共7页
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II... In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 展开更多
关键词 meshless method improved interpolating moving least-square method improved inter-polating element-free galerkin method potential problem
在线阅读 下载PDF
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 被引量:4
6
作者 Bai Fu-Nong Li Dong-Ming +1 位作者 Wang Jian-Fei Cheng Yu-Min 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期56-65,共10页
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar... In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method. 展开更多
关键词 meshless method improved complex variable moving least-squares approximation improved complex variable element-free galerkin method ELASTICITY
在线阅读 下载PDF
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
7
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free galerkin method potential problem
在线阅读 下载PDF
Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method 被引量:3
8
作者 程玉民 刘超 +1 位作者 白福浓 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期16-25,共10页
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c... In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods. 展开更多
关键词 meshless method complex variable moving least-squares approximation improved complex vari- able element-free galerkin method elastoplasticity
在线阅读 下载PDF
Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems 被引量:2
9
作者 唐耀宗 李小林 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期215-225,共11页
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin... We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis. 展开更多
关键词 meshless method moving least squares approximation element-free galerkin method error esti-mate
在线阅读 下载PDF
An improved interpolating element-free Galerkin method for elasticity 被引量:4
10
作者 孙凤欣 王聚丰 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期43-50,共8页
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble... Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method. 展开更多
关键词 meshless method improved interpolating moving least-squares (ⅡMLS) method improved interpolating element-free galerkin (Ⅱefg) method elasticity
在线阅读 下载PDF
Element-free Galerkin method for a kind of KdV equation
11
作者 王聚丰 孙凤欣 程荣军 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第6期7-12,共6页
The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Calerkin (EFG) method which is based on the moving least-squares approximation. A variational meth... The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Calerkin (EFG) method which is based on the moving least-squares approximation. A variational method is used to obtain discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for KdV equations needs only scattered nodes instead of meshing the domain of the problem. It does not require any element connectivity and does not suffer much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for the KdV equation is investigated by two numerical examples in this paper. 展开更多
关键词 element-free galerkin method meshless method KdV equation
在线阅读 下载PDF
The element-free Galerkin method of numerically solving a regularized long-wave equation
12
作者 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期32-37,共6页
The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the es... The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper. 展开更多
关键词 element-free galerkin method meshless method regularized long wave equation solitary wave
在线阅读 下载PDF
An improved element-free Galerkin method for solving the generalized fifth-order Korteweg-de Vries equation
13
作者 冯昭 王晓东 欧阳洁 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期320-327,共8页
In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used... In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method. 展开更多
关键词 element-free galerkin method shifted polynomial basis generalized fifth-order Korteweg–de Vries equation solitary wave
在线阅读 下载PDF
无网格Galerkin法的理论进展及其应用研究 被引量:3
14
作者 李晶 杨玉英 刘红生 《材料科学与工艺》 EI CAS CSCD 北大核心 2007年第2期186-191,共6页
无网格Galerkin(Element-free Galerkin,EFG)法是无网格方法中应用比较广泛的一种,在介绍其基本特点和原理的基础上,对其移动最小二乘近似过程中涉及到的基函数、权函数的选择、影响域半径的确定等方面取得的新进展进行了介绍.并针对本... 无网格Galerkin(Element-free Galerkin,EFG)法是无网格方法中应用比较广泛的一种,在介绍其基本特点和原理的基础上,对其移动最小二乘近似过程中涉及到的基函数、权函数的选择、影响域半径的确定等方面取得的新进展进行了介绍.并针对本征边界条件的满足,离散和积分方案的实施,自适应分析及误差分析的应用等一系列相关问题的研究现状及取得的成果进行了详细阐述.同时以受均布载荷的悬臂梁为例,编制了EFG平面弹性程序,验证了EFG法的可行性.最后针对EFG法存在的不足,提出了几个研究方向. 展开更多
关键词 无网格galerkin 移动最小二乘 权函数 影响域半径 本征边界条件 自适应 误差分析
在线阅读 下载PDF
一种自适应影响域半径无网格Galerkin法的应用研究 被引量:3
15
作者 边燕飞 何沛祥 程媛媛 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期535-538,共4页
文章在背景积分网格积分方式的基础上,采用基于最小移动二乘近似的一种自适应影响域半径无网格Galerkin法,运用线弹性断裂力学理论,对有限板单边裂纹的应力强度因子进行了分析。由于该方法仅需节点信息,而不需要节点的连接信息,从而避... 文章在背景积分网格积分方式的基础上,采用基于最小移动二乘近似的一种自适应影响域半径无网格Galerkin法,运用线弹性断裂力学理论,对有限板单边裂纹的应力强度因子进行了分析。由于该方法仅需节点信息,而不需要节点的连接信息,从而避免了有限元方法中的网格重构,大大简化了裂纹扩展的分析过程。数值计算结果表明了该方法的有效性。 展开更多
关键词 无网格galerkin 自适应影响域半径 衍射法 应力强度因子
在线阅读 下载PDF
基于滑动Kriging插值的EFG-SBM求解含侧边界的稳态热传导问题 被引量:1
16
作者 王峰 陈佳莉 +3 位作者 陈灯红 范勇 李志远 何卫平 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第11期1483-1492,共10页
采用基于滑动Kriging插值的无单元伽辽金比例边界法(EFG-SBM)求解侧边界有温度载荷的稳态热传导问题,该方法通过无单元伽辽金法(EFG)和滑动Kriging插值离散环向边界.由于滑动Kriging插值形函数具备Kronecker delta函数插值特性,克服了... 采用基于滑动Kriging插值的无单元伽辽金比例边界法(EFG-SBM)求解侧边界有温度载荷的稳态热传导问题,该方法通过无单元伽辽金法(EFG)和滑动Kriging插值离散环向边界.由于滑动Kriging插值形函数具备Kronecker delta函数插值特性,克服了移动最小二乘逼近难以直接准确施加本质边界条件的不足.作为一种新型的边界型无网格法,EFG-SBM兼有EFG法和比例边界有限元法(SBFEM)的优点.该方法继承了SBFEM的半解析特性,通过引入比例边界坐标系,可将偏微分控制方程环向离散,径向上解析求解.与传统的SBFEM相比,环向边界通过节点进行离散,前处理和后处理简便.通过数值算例可以看出,相比基于拉格朗日多项式的SBFEM,基于滑动Kriging插值的EFG-SBM计算精度更高.相比有限元法(FEM),该方法能更好地反映尖角处热奇异性以及无限域温度分布状态. 展开更多
关键词 无单元伽辽金比例边界法 滑动Kriging插值 热传导 比例边界有限元法
在线阅读 下载PDF
基于EFG-FEM的加筋土数值计算方法
17
作者 杜运兴 李秋迪 周芬 《公路工程》 北大核心 2019年第3期33-38,64,共7页
提出了一种基于EFG-FEM的加筋土数值计算方法。将等效附加应力法引入EFG中,提出了基于EFG的等效附加应力法。该方法中筋材的作用以附加应力的形式施加在土体上,并最终体现在附加刚度矩阵上。素土采用邓肯张E-v模型模拟其非线性特性,并... 提出了一种基于EFG-FEM的加筋土数值计算方法。将等效附加应力法引入EFG中,提出了基于EFG的等效附加应力法。该方法中筋材的作用以附加应力的形式施加在土体上,并最终体现在附加刚度矩阵上。素土采用邓肯张E-v模型模拟其非线性特性,并将其应用于EFG中,提出了背景单元弹性矩阵的计算方法。最后,采用EFG-FEM数值方法计算一加筋土模型,将其与有限元的计算结果比较,证明本文方法具有较好的精度和计算效率。 展开更多
关键词 有限元 无网格 efg-FEM 加筋土 等效附加应力法
在线阅读 下载PDF
基于无网格Galerkin方法研究混凝土损伤
18
作者 王晓飞 姜国清 都春苗 《交通标准化》 2009年第22期90-93,共4页
采用无网格Galerkin方法来计算损伤问题与完全采用基于点的方法近似,不需要网格,避免了网格再生成的复杂过程,非常适合分析裂纹扩展、高速撞击和穿透等问题,具有广阔的应用前景。在众多无网格方法中,无网格Galerkin法以方法稳定、精度... 采用无网格Galerkin方法来计算损伤问题与完全采用基于点的方法近似,不需要网格,避免了网格再生成的复杂过程,非常适合分析裂纹扩展、高速撞击和穿透等问题,具有广阔的应用前景。在众多无网格方法中,无网格Galerkin法以方法稳定、精度高、对离散点的不规则分布不敏感和最适合结构分析等优点受到了较多的关注。 展开更多
关键词 无网格galerkin 损伤力学 混凝土
在线阅读 下载PDF
基于EFG法的可伸缩梁结构动力学分析 被引量:1
19
作者 谢丹 赖梦恬 蹇开林 《航空工程进展》 CSCD 2017年第2期135-142,共8页
传统有限元法在处理时变边界、时变系数的轴向可伸缩梁时需要不断改变单元尺寸或单元数目,不利于程序化且计算精度无法保证。基于广义移动最小二乘(GMLS),采用不受单元限制的全域插值EFG法对柔性梁的变形场进行空间离散,根据哈密尔顿变... 传统有限元法在处理时变边界、时变系数的轴向可伸缩梁时需要不断改变单元尺寸或单元数目,不利于程序化且计算精度无法保证。基于广义移动最小二乘(GMLS),采用不受单元限制的全域插值EFG法对柔性梁的变形场进行空间离散,根据哈密尔顿变分原理得到轴向可伸缩梁横向振动的无单元动力学离散方程;采用数值算例分析可伸缩梁的横向振动频率、各种轴向运动规律下梁末端的自由振动响应以及强迫振动响应。结果表明:全域插值EFG法可用于时变参数结构的动力学分析。 展开更多
关键词 时变系统 伸缩梁 数值分析 efg 结构动力学
在线阅读 下载PDF
A meshless method for the compound KdV-Burgers equation 被引量:1
20
作者 程荣军 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期41-46,共6页
The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and ... The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method. The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples. 展开更多
关键词 element-free galerkin (efg method meshless method compound Korteweg-de Vries-Burgers (KdVB) equation solitary wave
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部