The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel...The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.展开更多
In the past decade, a variety of microfabricated pumps and fluid-handling systems based on ultrasonic, electricity, light, magnet and heat actuated technologies were reported[1], which could be classified into two... In the past decade, a variety of microfabricated pumps and fluid-handling systems based on ultrasonic, electricity, light, magnet and heat actuated technologies were reported[1], which could be classified into two groups: membrane-displacement pumps and field-induced flow pumps. An advantage of field-induced flow pumps over the former is that they do not require moving parts, such as check valves which complicate the fabrication, sealing, and operation of the systems.……展开更多
The behaviour of water and small solutes in confined geometries is important to a variety of chemical and nanofluidic applications. Here we investigate the permeation and distribution of water and ions in electrically...The behaviour of water and small solutes in confined geometries is important to a variety of chemical and nanofluidic applications. Here we investigate the permeation and distribution of water and ions in electrically charged carbon cylindrical nanopore during the osmotic process using molecular dynamics simulations. In the simulations, charges are distributed uniformly on the pores with diameter of 0.9 nm. For nanopores with no charge or a low charge, ions are difficult to enter. With the increasing of charge densities on the pores, ions will appear inside the nanopores because of the large electronic forces between the ions and the charged pores. Different ion entries induce varying effects on osmotic water flow. Our simulations reveal that the osmotic water can flow through the negatively charged pore occupied by K^+ ions, while water flux through the positively charged pores will be disrupted by Cl^- ions inside the pores. This may be explained by the different radial distributions of K^+ ions and Cl^- ions inside the charged nanopores.展开更多
基金Project supported by the Natural Science Foundation of Inner Mongolia of China(Grant No.2021BS01008)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2323)the Scientific Research Funding Project for introduced high level talents of IMNU(Grant No.2020YJRC014)。
文摘The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.
基金Suported by National Natural Science Foundation(No. 29925514) for Outstanding Young Scientists.
文摘 In the past decade, a variety of microfabricated pumps and fluid-handling systems based on ultrasonic, electricity, light, magnet and heat actuated technologies were reported[1], which could be classified into two groups: membrane-displacement pumps and field-induced flow pumps. An advantage of field-induced flow pumps over the former is that they do not require moving parts, such as check valves which complicate the fabrication, sealing, and operation of the systems.……
基金Supported by Chinese Academy of Sciences, the National Natural Science Foundation of China under Grant Nos 10604060 and 10674146, and Shanghai Supercomputer Center. We thank Professor Haiping FANG for the suggestion of the project and helpful discussion.
文摘The behaviour of water and small solutes in confined geometries is important to a variety of chemical and nanofluidic applications. Here we investigate the permeation and distribution of water and ions in electrically charged carbon cylindrical nanopore during the osmotic process using molecular dynamics simulations. In the simulations, charges are distributed uniformly on the pores with diameter of 0.9 nm. For nanopores with no charge or a low charge, ions are difficult to enter. With the increasing of charge densities on the pores, ions will appear inside the nanopores because of the large electronic forces between the ions and the charged pores. Different ion entries induce varying effects on osmotic water flow. Our simulations reveal that the osmotic water can flow through the negatively charged pore occupied by K^+ ions, while water flux through the positively charged pores will be disrupted by Cl^- ions inside the pores. This may be explained by the different radial distributions of K^+ ions and Cl^- ions inside the charged nanopores.