A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road...A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus.Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics,a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests.By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency,the control algorithm of the target suspension height(i.e.,stiffness) was derived according to driving speed and road roughness.Taking account of the nonlinearities of a continuous variable semi-active damper,the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force,which was calculated based on LQG control.Finally,a GA(genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method.Simulation results indicate that compared with the GA-based matching method,both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method,with peak values of the dynamic tire force PSD(power spectral density) decreased by 73.6%,60.8% and 71.9% in the three cases,and corresponding reduction are 71.3%,59.4% and 68.2% for the vehicle body vertical acceleration.A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.展开更多
为解决电控空气悬架(electric control air suspension,简称ECAS)车身高度切换过程中的振荡及"过充"、"过放"现象,以空气弹簧特性为媒介,与车辆动力学相结合,对车身高度调节系统的进行建模。通过遗传算法优化车身...为解决电控空气悬架(electric control air suspension,简称ECAS)车身高度切换过程中的振荡及"过充"、"过放"现象,以空气弹簧特性为媒介,与车辆动力学相结合,对车身高度调节系统的进行建模。通过遗传算法优化车身高度调节系统PID的控制参数,提出一种新的积分分离PID控制策略。采用Matlab/Simulink搭建模型并对控制前、后仿真结果进行了对比。结果证明,所设计的控制方法能有效解决以上问题,优化后的车身高度调节系统能显著减少汽车振荡及干扰,操纵稳定性得到改善。展开更多
针对电控空气悬架(electronically controlled air suspension,简称ECAS)系统在车高调节过程中由于传感器故障频发导致控制效果变差的问题,提出一种能够对电控空气悬架系统传感器故障进行诊断的方法。首先,采用AMESim软件搭建ECAS系统...针对电控空气悬架(electronically controlled air suspension,简称ECAS)系统在车高调节过程中由于传感器故障频发导致控制效果变差的问题,提出一种能够对电控空气悬架系统传感器故障进行诊断的方法。首先,采用AMESim软件搭建ECAS系统物理模型以实现空气弹簧特性的精确描述,同时在Matlab/Simulink中搭建路面激励和传感器故障的数学模型;其次,针对车辆ECAS系统的非线性特性,采用扩展卡尔曼滤波器组设计故障诊断方案,并进行不同传感器不同故障类型的联合仿真;最后,搭建了1/4ECAS系统台架,进行车高调节过程中传感器故障诊断试验。试验结果表明,所提出的方法能够准确地辨识ECAS系统传感器的典型故障,较好地隔离不同的故障传感器,为ECAS系统的准确可靠运行提供了保证。展开更多
基金Projects(51305117,51178158)supported by the National Natural Science Foundation of ChinaProject(20130111120031)supported by the Specialized Research Fund for the Doctoral Program of Higher Education+1 种基金Project(2013M530230)supported by the China Postdoctoral Science FoundationProjects(2012HGQC0015,2011HGBZ0945)supported by the Fundamental Research Funds for the Central Universities,China
文摘A novel method of matching stiffness and continuous variable damping of an ECAS(electronically controlled air suspension) based on LQG(linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus.Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics,a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests.By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency,the control algorithm of the target suspension height(i.e.,stiffness) was derived according to driving speed and road roughness.Taking account of the nonlinearities of a continuous variable semi-active damper,the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force,which was calculated based on LQG control.Finally,a GA(genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method.Simulation results indicate that compared with the GA-based matching method,both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method,with peak values of the dynamic tire force PSD(power spectral density) decreased by 73.6%,60.8% and 71.9% in the three cases,and corresponding reduction are 71.3%,59.4% and 68.2% for the vehicle body vertical acceleration.A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.
文摘为解决电控空气悬架(electric control air suspension,简称ECAS)车身高度切换过程中的振荡及"过充"、"过放"现象,以空气弹簧特性为媒介,与车辆动力学相结合,对车身高度调节系统的进行建模。通过遗传算法优化车身高度调节系统PID的控制参数,提出一种新的积分分离PID控制策略。采用Matlab/Simulink搭建模型并对控制前、后仿真结果进行了对比。结果证明,所设计的控制方法能有效解决以上问题,优化后的车身高度调节系统能显著减少汽车振荡及干扰,操纵稳定性得到改善。
文摘针对电控空气悬架(electronically controlled air suspension,简称ECAS)系统在车高调节过程中由于传感器故障频发导致控制效果变差的问题,提出一种能够对电控空气悬架系统传感器故障进行诊断的方法。首先,采用AMESim软件搭建ECAS系统物理模型以实现空气弹簧特性的精确描述,同时在Matlab/Simulink中搭建路面激励和传感器故障的数学模型;其次,针对车辆ECAS系统的非线性特性,采用扩展卡尔曼滤波器组设计故障诊断方案,并进行不同传感器不同故障类型的联合仿真;最后,搭建了1/4ECAS系统台架,进行车高调节过程中传感器故障诊断试验。试验结果表明,所提出的方法能够准确地辨识ECAS系统传感器的典型故障,较好地隔离不同的故障传感器,为ECAS系统的准确可靠运行提供了保证。