Effect of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy was investigated. The results show that electromagnetic stirring causes a change of morphology of α-Mg phase from coarse dendrites t...Effect of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy was investigated. The results show that electromagnetic stirring causes a change of morphology of α-Mg phase from coarse dendrites to fine rosette-like or spherical shape. Grain size is significantly refined within the range of input voltage 75?125 V, moreover, the optimum input voltage corresponded to the minimum value (64 μm) of grain size is 125 V. Compared to the non-stirred condition, the amount of β-Mg17Al12 precipitate under the stirred condition obviously increases. The grain refinement of AZ91-0.8%Ce alloy is mainly attributed to multiplication of existing grains in the melt caused by forced fluid flow under electromagnetic stirring condition. Addition of 0.8% Ce results in the formation of ‘necking’ at secondary dendrite arm roots of α-Mg crystals, and consequently, it is helpful to increase the number of heterogeneous nucleation.展开更多
To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless ...To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.展开更多
基金Project(2004ABA110) supported by the Natural Science Foundation of Hubei Province project(471-38300843) supported by the Research Foundation for the Doctoral Program of Wuhan University of Technology
文摘Effect of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy was investigated. The results show that electromagnetic stirring causes a change of morphology of α-Mg phase from coarse dendrites to fine rosette-like or spherical shape. Grain size is significantly refined within the range of input voltage 75?125 V, moreover, the optimum input voltage corresponded to the minimum value (64 μm) of grain size is 125 V. Compared to the non-stirred condition, the amount of β-Mg17Al12 precipitate under the stirred condition obviously increases. The grain refinement of AZ91-0.8%Ce alloy is mainly attributed to multiplication of existing grains in the melt caused by forced fluid flow under electromagnetic stirring condition. Addition of 0.8% Ce results in the formation of ‘necking’ at secondary dendrite arm roots of α-Mg crystals, and consequently, it is helpful to increase the number of heterogeneous nucleation.
基金Project(CSTC2007BB4216) supported by the Natural Science Foundation of Chongqing,China
文摘To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.