A typical electronic communication system, such as GPS receiver, unmanned aerial vehicle's (UAV's) data link, and radar, faces multi-dimensional and complicated electromagnetic interference in operating environmen...A typical electronic communication system, such as GPS receiver, unmanned aerial vehicle's (UAV's) data link, and radar, faces multi-dimensional and complicated electromagnetic interference in operating environment. To measure the anti- interference performance of the electronic communication system in the complicated electromagnetic interference environment, a method of multi-dimensional and complicated electromagnetic interference hardware-in-the-loop simulation in an anechoic room is proposed. It takes into account the characteristics of interference signals and the positional relationship among interference, the receiver and the transmitter of the electronic communication system. It uses the grey relational method and the angular domain mapping error correction method to control the relevant parameters, the microwave switch and so on, thus achieving the approximately actual mapping of the outdoor multi-dimensional and complicated electromagnetic interference in the anechoic room. To verify the effectiveness of this method, the multi-dimensional and complicated electromagnetic interference of the UAV's data link is simulated as an example. The results show that the degree of correlation between the calculated signal to interference ratio of the data link receiver in the actual scene and the measured signal to interference ratio of the data link receiver simulated with this method in the anechoic room is 0.968 1, proving that the method is effective for simulating the complicated electromagnetic interference.展开更多
Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were p...Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were prepared by a two-step reduction of graphene oxide(GO),in which the two steps were chemical reduction by HI and the solid phase microwave irradiation.A significant increase of the film thickness from around 20 to 200μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation.The total shielding effectiveness(SET)and the reflective SE(SE_(R))of the SiC@RGO porous thin films depended on the GO/SiC mass ratio.The highest SET achieved was 35.6 dB while the SE_(R) was only 2.8 dB,when the GO/SiC mass ratio was 4∶1.The addition of SiC whiskers was critical for the multi-reflection,interfacial po-larization and dielectric attenuation of EM waves.A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers.The highest SET of the multilayer films reached 75.1 dB with a SE_(R) of 2.7 dB for a film thickness of about 1.5 mm.These porous SiC@RGO thin films should find use in multilayer or sand-wich structures for EMI absorption in packaging or lining.展开更多
As semiconductor technologies have been shrinking,the speed of circuits,integration density,and the number of I/O interfaces have been significantly increasing.As a consequence,electromagnetic emanation(EME)becomes a ...As semiconductor technologies have been shrinking,the speed of circuits,integration density,and the number of I/O interfaces have been significantly increasing.As a consequence,electromagnetic emanation(EME)becomes a critical issue in digital system designs.Electronic devices must meet electromagnetic compatibility(EMC)requirements to ensure that they operate properly,and safely without interference.I/O buffers consume high currents when they operate.The bonding wires,and lead frames are long enough to play as efficient antennas to radiate electromagnetic interference(EMI).Therefore,I/O switching activities significantly contribute to the EMI.In this paper,we evaluate and analyze the impact of I/O switching activities on the EME.We will change the circuit configurations such as the supply voltage for I/O banks,their switching frequency,driving current,and slew rate.Additionally,a trade-off between the switching frequencies and the number of simultaneous switching outputs(SSOs)is also considered in terms of EME.Moreover,we evaluate the electromagnetic emissions that are associated with the different I/O switching patterns.The results show that the electromagnetic emissions associated I/O switching activities depend strongly on their operating parameters and configurations.All the circuit implementations and measurements are carried out on a Xilinx Spartan-3 FPGA.展开更多
An online partial discharge(PD) measurement performed on a high voltage direct current(HVDC) wall bushing successfully identified the presence of internal discharges.The wall bushing is a sulfur hexafluoride gas-insul...An online partial discharge(PD) measurement performed on a high voltage direct current(HVDC) wall bushing successfully identified the presence of internal discharges.The wall bushing is a sulfur hexafluoride gas-insulated bushing,rated for 500 kV dc and terminated on a thyristor-controlled HVDC converter bridge.The measurement of PD within the HVDC station environment is particularly challenging due to the high levels of electromagnetic noise caused by thyristor switching events and external air-corona from the neighboring high-voltage equipment.An additional challenge is the""mixed"voltage stress on the bushing insulation,which has both ac and dc high-voltage components.There are also fast transients during the firing of thyristors in the HVDC conversion process that cause added stress to the insulation.As a result,the analysis and interpretation of PD data for HVDC equipment is more complex;PD pulses may occur in response to the ac,dc,or switching transient voltage stresses.In this paper,an online PD measurement strategy for noise filtering and isolation of PD sources within the bushing are discussed.The PD measurement data is plotted on a phase-resolved diagram where the line supply power cord voltage was used as a reference. The phase-resolved diagram appears to suggest that the fast transients,caused during switching,trigger some PD events.Measurements were also performed with the aid of a modern PD measurement instrument having noise separation capabilities.The findings from the online PD measurements are verified with physical evidence,found after the bushing was removed from service,suggested internal PD had occurred inside the bushing.展开更多
Near-field plates with the capabilities of modulating the near-field pattern and forcing the incident wave to a subwavelength spot have been experimentally investigated at microwave wavelengths.Their superlensing prop...Near-field plates with the capabilities of modulating the near-field pattern and forcing the incident wave to a subwavelength spot have been experimentally investigated at microwave wavelengths.Their superlensing properties result from the radiationless electromagnetic interference.However, the material's loss and limitations of state-of-the-art nanofabricating technology pose great challenges to scale down the microwave near-field plates to the infrared or optical region.In this paper, a related but alternative approach based on metasurface is introduced which breaks the near-field diffraction limit at mid-infrared region(10.6 μm).The metasurface consists of periodic arrangement of chromium dipolar antennas with the same geometry but spatially varying orientations, which plays the dual roles in achieving the prescribed amplitude modulation and the abrupt π phase change between the subwavelength neighboring elements.As a result, a two dimensional subdiffraction focus as small as 0.037λ~2 at ~0.15λ above the metasurface is presented.In addition, the broadband response and ease fabrication bridge the gap between the theoretical investigation and valuable applications, such as near-field data storage, subdiffraction imaging and nanolithography.展开更多
基金supported by the National Natural Science Foundation of China(61571368)the certain Ministry Foundation(2014607B006)
文摘A typical electronic communication system, such as GPS receiver, unmanned aerial vehicle's (UAV's) data link, and radar, faces multi-dimensional and complicated electromagnetic interference in operating environment. To measure the anti- interference performance of the electronic communication system in the complicated electromagnetic interference environment, a method of multi-dimensional and complicated electromagnetic interference hardware-in-the-loop simulation in an anechoic room is proposed. It takes into account the characteristics of interference signals and the positional relationship among interference, the receiver and the transmitter of the electronic communication system. It uses the grey relational method and the angular domain mapping error correction method to control the relevant parameters, the microwave switch and so on, thus achieving the approximately actual mapping of the outdoor multi-dimensional and complicated electromagnetic interference in the anechoic room. To verify the effectiveness of this method, the multi-dimensional and complicated electromagnetic interference of the UAV's data link is simulated as an example. The results show that the degree of correlation between the calculated signal to interference ratio of the data link receiver in the actual scene and the measured signal to interference ratio of the data link receiver simulated with this method in the anechoic room is 0.968 1, proving that the method is effective for simulating the complicated electromagnetic interference.
文摘Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were prepared by a two-step reduction of graphene oxide(GO),in which the two steps were chemical reduction by HI and the solid phase microwave irradiation.A significant increase of the film thickness from around 20 to 200μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation.The total shielding effectiveness(SET)and the reflective SE(SE_(R))of the SiC@RGO porous thin films depended on the GO/SiC mass ratio.The highest SET achieved was 35.6 dB while the SE_(R) was only 2.8 dB,when the GO/SiC mass ratio was 4∶1.The addition of SiC whiskers was critical for the multi-reflection,interfacial po-larization and dielectric attenuation of EM waves.A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers.The highest SET of the multilayer films reached 75.1 dB with a SE_(R) of 2.7 dB for a film thickness of about 1.5 mm.These porous SiC@RGO thin films should find use in multilayer or sand-wich structures for EMI absorption in packaging or lining.
基金Project(2018R1D1A1B07043399)supported by Basic Science Research Program through the National Research Foundation,Korea
文摘As semiconductor technologies have been shrinking,the speed of circuits,integration density,and the number of I/O interfaces have been significantly increasing.As a consequence,electromagnetic emanation(EME)becomes a critical issue in digital system designs.Electronic devices must meet electromagnetic compatibility(EMC)requirements to ensure that they operate properly,and safely without interference.I/O buffers consume high currents when they operate.The bonding wires,and lead frames are long enough to play as efficient antennas to radiate electromagnetic interference(EMI).Therefore,I/O switching activities significantly contribute to the EMI.In this paper,we evaluate and analyze the impact of I/O switching activities on the EME.We will change the circuit configurations such as the supply voltage for I/O banks,their switching frequency,driving current,and slew rate.Additionally,a trade-off between the switching frequencies and the number of simultaneous switching outputs(SSOs)is also considered in terms of EME.Moreover,we evaluate the electromagnetic emissions that are associated with the different I/O switching patterns.The results show that the electromagnetic emissions associated I/O switching activities depend strongly on their operating parameters and configurations.All the circuit implementations and measurements are carried out on a Xilinx Spartan-3 FPGA.
基金Manitoba Hydro for funding and supporting this research
文摘An online partial discharge(PD) measurement performed on a high voltage direct current(HVDC) wall bushing successfully identified the presence of internal discharges.The wall bushing is a sulfur hexafluoride gas-insulated bushing,rated for 500 kV dc and terminated on a thyristor-controlled HVDC converter bridge.The measurement of PD within the HVDC station environment is particularly challenging due to the high levels of electromagnetic noise caused by thyristor switching events and external air-corona from the neighboring high-voltage equipment.An additional challenge is the""mixed"voltage stress on the bushing insulation,which has both ac and dc high-voltage components.There are also fast transients during the firing of thyristors in the HVDC conversion process that cause added stress to the insulation.As a result,the analysis and interpretation of PD data for HVDC equipment is more complex;PD pulses may occur in response to the ac,dc,or switching transient voltage stresses.In this paper,an online PD measurement strategy for noise filtering and isolation of PD sources within the bushing are discussed.The PD measurement data is plotted on a phase-resolved diagram where the line supply power cord voltage was used as a reference. The phase-resolved diagram appears to suggest that the fast transients,caused during switching,trigger some PD events.Measurements were also performed with the aid of a modern PD measurement instrument having noise separation capabilities.The findings from the online PD measurements are verified with physical evidence,found after the bushing was removed from service,suggested internal PD had occurred inside the bushing.
基金supported by the National Natural Science Funds (61575032)
文摘Near-field plates with the capabilities of modulating the near-field pattern and forcing the incident wave to a subwavelength spot have been experimentally investigated at microwave wavelengths.Their superlensing properties result from the radiationless electromagnetic interference.However, the material's loss and limitations of state-of-the-art nanofabricating technology pose great challenges to scale down the microwave near-field plates to the infrared or optical region.In this paper, a related but alternative approach based on metasurface is introduced which breaks the near-field diffraction limit at mid-infrared region(10.6 μm).The metasurface consists of periodic arrangement of chromium dipolar antennas with the same geometry but spatially varying orientations, which plays the dual roles in achieving the prescribed amplitude modulation and the abrupt π phase change between the subwavelength neighboring elements.As a result, a two dimensional subdiffraction focus as small as 0.037λ~2 at ~0.15λ above the metasurface is presented.In addition, the broadband response and ease fabrication bridge the gap between the theoretical investigation and valuable applications, such as near-field data storage, subdiffraction imaging and nanolithography.