Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continue...Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continues even when the electrolyte flow is stopped,leading to great Al waste.To tackle these issues,an innovative cotton-based aluminum-air battery is developed in this study.Instead of flowing alkaline solution,cotton substrate pre-deposited with solid alkaline is used,together with a small water reservoir to continuously wet the cotton and dissolve the alkaline in-situ.In this manner,the battery can be mechanically recharged by replacing the cotton substrate and refilling the water reservoir,while the thick aluminum anode can be reused for tens of times until complete consumption.The cotton substrate shows excellent ability for the storage and transportation of alkaline electrolyte,leading to a high peak power density of 73 mW cm^(-2) and a high specific energy of 930 mW h g^(-1).Moreover,the battery discharge capacity is found to be linear to the loading of pre-deposited alkaline,so that it can be precisely controlled according to the mission profile to avoid Al waste.Finally,a two-cell battery pack with common water reservoir is developed,which can provide a voltage of 2.7 V and a power output of 223.8 mW.With further scaling-up and stacking,this cotton-based Al-air battery system with low cost and high energy density is very promising for recharging miniwatt electronics in the outdoor environment.展开更多
The interactions between a two-level atom and a field via two-photon transition without rotating wave approx- imation have been investigated. We emphasize the dynamic behaviors of the atomic population inversion, the ...The interactions between a two-level atom and a field via two-photon transition without rotating wave approx- imation have been investigated. We emphasize the dynamic behaviors of the atomic population inversion, the field squeezing, and the atomic dipole squeezing numerically when the field frequency varies with time in the forms of sine and rectangle. Some interesting phenomena are discovered and discussed. The good periodic character of the atomic population inversion in the standard two-photon Jaynes Cummings model is weakened by the influence of the sine field frequency modulation. The rectangular field frequency modulation can change the correlation among different oscillations suddenly and induce new collapse-revival processes of the atomic population inversion. The field squeezing increases at the beginning of time, but then decreases and loses as the time increases after it reaches the maximum due to the sine modulation. The effects of the rectangular modulation on the field squeezing depend mostly on the appearance time of the modulation. The atomic dipole squeezing is weakened under the influence of the sine or rectangular modulation. Our results indicate that it is possible to perform the dynamic controlling of the system properties by changing the parameters of the system with time. This implies that one can dynamically control a quantum information process by choosing the system modulation properly.展开更多
We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using TH...We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system.The tested liquids were deionised water and CuSO_(4),CuC_(l2),NaHCO_(3),Na_(2)CO_(3) and NaCl solutions.The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases.The applied electric field alters the dipole moment of water molecules in the electrolyte solution,which affects the vibration and rotation of the whole water molecules,breaks the hydrogen bonds in the water,increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.展开更多
The three-dimensional electron-electron correlation in an elliptically polarized laser field is investigated based on a semiclassical model. Asymmetry parameter α of the correlated electron momentum distribution is u...The three-dimensional electron-electron correlation in an elliptically polarized laser field is investigated based on a semiclassical model. Asymmetry parameter α of the correlated electron momentum distribution is used to quantitatively describe the electron-electron correlation. The dependence of α on elliptieity e is totally different in three directions. For the z direction (maJor polarization direction), α first increases and reaches a maximum at ε = 0.275, then it decreases quickly. For the y direction in which the laser field is always absent, the ellipticity has a minor effect, and the asymmetry parameter fluctuates around α = -0.15. However, for the x direction (minor polarization direction), α increases monotonously with ellipticity though starts from the same value as in the y direction when ε = 0. The behavior of α in the x direction actually indicates a transformation from the Coulomb interaction dominated correlation to the laser field dominated correlation. Therefore, our work provides an efficient way to control the three-dimensional electron electron correlation via an elliptically polarized intense laser field.展开更多
We propose the realization of Majorana fermions (MFs) on the edges of a two-dimensional topological insulator in the proximity with s-wave superconductors and in the presence of transverse exchange field h. It is sh...We propose the realization of Majorana fermions (MFs) on the edges of a two-dimensional topological insulator in the proximity with s-wave superconductors and in the presence of transverse exchange field h. It is shown that there appear a pair of MFs localized at two junctions and that a reverse in the direction of h can lead to permutation of two MFs. With decreasing h, the MF states can either be fused or form one Dirac fermion on the π-junctions, exhibiting a topological phase transition. This characteristic can be used to detect physical states of MFs when they are transformed into Dirac fermions MFs is also given. localized on the π-junction. A condition of decoupling two展开更多
We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping fi...We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.展开更多
We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via co...We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a nmch easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.展开更多
Spontaneous combustion of coal seam has been and continues to be a big problem in coal mines. It could pose great threat to the safety of the whole mine and all miners, especially when it occurs in or nearby coal mine...Spontaneous combustion of coal seam has been and continues to be a big problem in coal mines. It could pose great threat to the safety of the whole mine and all miners, especially when it occurs in or nearby coal mines. Besides, environment of area surrounded mines during combustion can be threatened where large amount of toxic gases including CO_2, CO, SO_2 and H_2S can be leased by fire in mine. Hence, it is important and significant for scholars to study the controlling and preventing of the coal seam fire. In this paper, the complicated reasons for the occurrence and development of spontaneous combustion in coal seam are analysed and different models under various air leakage situations are built as well. Based on the model and approximately calculation, the difficulty of fire extinguishment in coal seam is pointed out as the difficulty and poor effect to remove the large amount of heat released. Detailed measurements about backfilling and case analyses are also provided on the basis of the recent ten years' practice of controlling spontaneous combustion in coal seams in China. A technical fire prevention and control method has been concluded as five steps including detection, prevention, sealing, injection and pressure adjustment. However, various backfill materials require different application and environmental factors, so in this paper, analyses and discussion about the effect and engineering application of prevention of spontaneous combustion are provided according to different backfilling technologies and methods. Once the aforementioned fire prevention can be widely applied and regulated in mines, green mining will be achievable concerning mine fire prevention and control.展开更多
According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize...According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize the system and to improve the flexibility and extent of the system. Essentially, the paper introduces the integration of FCS on I/O layers. Based on a real coal mine safety-monitoring and control system applied with a CAN field bus, the major technology of system relays and extensions is discussed. We believe that one of the most applicable methods is currently replacing the connection between function-stations and field-sensors with a CAN bus on I/0 layers for system integration.展开更多
Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)...Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)derived porous carbon via controlling the proportion of both water in a mixed solvent(dimethylformamide and water)and ligand in MOF-5 precursors(metal and ligand),which is categorized by its morphology(i.e.Cracked stone(closed),Tassel(open)and Intermediate(semi-open)).For example,decrease in water and increase in ligand content induce Cracked stone WDMs which showed the highest specific surface area(2742-2990 m^(2)/g)and pore volume(2.81-3.28 cm^(3)/g)after carbonization.Morphological effect of carbonized WDMs(CWDMs)on battery performance was examined by introducing electrolytes with different sulfur reduction mechanisms(i.e.DOL/DME and ACN_(2) LiTFSITTE):Closed framework effectively confines polysulfide,whereas open framework enhances electrolyte accessibility.The initial capacities of the batteries were in the following order:Cracked stone>Intermediate>Tassel for DOL/DME and Intermediate>Tassel>Cracked stone for ACN_(2) LiTFSI-TTE.To note,Intermediate CWDM exhibited the highest initial capacity and retained capacity after 100 cycles(1398 and 747 mAh/g)in ACN_(2) LiTFSI-TTE electrolyte having advantages from both open and closed frameworks.In sum,we could correlate cathode morphology(openness and pore structure)and electrolyte type(i.e.polysulfide solubility)with lithium-sulfur battery performance.展开更多
Sequential control applied to the International Thermonuclear Experimental Re- actor (ITER) poloidal field converter system for the purpose of reactive power reduction is the subject of this investigation. Due to th...Sequential control applied to the International Thermonuclear Experimental Re- actor (ITER) poloidal field converter system for the purpose of reactive power reduction is the subject of this investigation. Due to the inherent characteristics of thyristor-based phase-controlled converter, the poloidal field converter system consumes a huge amount of reactive power from the grid, which subsequently results in a voltage drop at the 66 kV busbar if no measure is taken. The installation of a static var compensator rated for 750 MVar at the 66 kV busbax is an essential way to compensate reactive power to the grid, which is the most effective measure to solve the problem. However, sequential control of the multi-series converters provides an additional method to improve the natural power factor and thus alleviate the pressure of reactive power demand of the converter system without any additional cost. In the present paper, by comparing with the symmetrical control technique, the advantage of sequential control in reactive power consumption is highlighted. Simulation results based on SIMULINK are found in agreement with the theoretical analysis.展开更多
A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchr...A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.展开更多
This paper theoretically investigates the coherent phase control in electron-argon scattering assisted by a bichro- matic laser field. The laser field is composed of a fundamental component and its second harmonic. Th...This paper theoretically investigates the coherent phase control in electron-argon scattering assisted by a bichro- matic laser field. The laser field is composed of a fundamental component and its second harmonic. The incoming and out going states of electron are described by the Volkov wave functions, and the electron-target interaction is treated as a screening potential. Numerical results for differential cross section of multiphoton processes vs the phase difference between the two components of laser field are discussed for several scattering angles and impact energies.展开更多
The dependences of electrochemical potential at the interface between carbon nanotubes and electrolyte upon temperature and electrolyte concentration are studied. Carbon nanotubes were synthesized by hot filament chem...The dependences of electrochemical potential at the interface between carbon nanotubes and electrolyte upon temperature and electrolyte concentration are studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition with Si as the substrate. Four substances were tested: NaCl solution, KCl solution, water and alcohol. It is found that for NaCl and KCl solutions, at the interface, there is a large electrochemical potential which increases with temperature and is larger for an electrolyte of higher concentration. There is a significant field effect of carbon nanotubes with electrolyte as the gate, and the effect depends on the ionizability of the electrolyte. Such physicochemical property invests carbon nanotube a potential application in nanoelectronics.展开更多
To address the key problems in the application of intelligent technology in geothermal development,smart application scenarios for geothermal development are constructed.The research status and existing challenges of ...To address the key problems in the application of intelligent technology in geothermal development,smart application scenarios for geothermal development are constructed.The research status and existing challenges of intelligent technology in each scenario are analyzed,and the construction scheme of smart geothermal field system is proposed.The smart geothermal field is an organic integration of geothermal development engineering and advanced technologies such as the artificial intelligence.At present,the technology of smart geothermal field is still in the exploratory stage.It has been tested for application in scenarios such as intelligent characterization of geothermal reservoirs,dynamic intelligent simulation of geothermal reservoirs,intelligent optimization of development schemes and smart management of geothermal development.However,it still faces many problems,including the high computational cost,difficult real-time response,multiple solutions and strong model dependence,difficult real-time optimization of dynamic multi-constraints,and deep integration of multi-source data.The construction scheme of smart geothermal field system is proposed,which consists of modules including the full database,intelligent characterization,intelligent simulation and intelligent optimization control.The connection between modules is established through the data transmission and the model interaction.In the next stage,it is necessary to focus on the basic theories and key technologies in each module of the smart geothermal field system,to accelerate the lifecycle intelligent transformation of the geothermal development and utilization,and to promote the intelligent,stable,long-term,optimal and safe production of geothermal resources.展开更多
This paper reviews how we have designed the upgraded poloidal field control system on HT-7 superconducting Tokmak by applying advanced computer technologies and Multivariable decoupling control theory. This paper emph...This paper reviews how we have designed the upgraded poloidal field control system on HT-7 superconducting Tokmak by applying advanced computer technologies and Multivariable decoupling control theory. This paper emphasizes on designing the method of the control system,including system components and their functions.展开更多
A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was anal...A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.展开更多
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in...Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.展开更多
The PF (Poloidal Field) control system is one of the most important control systems in HT-7 Tokamak. Most of parameters such as plasma current, plasma horizontal position and plasma vertical position will be monitored...The PF (Poloidal Field) control system is one of the most important control systems in HT-7 Tokamak. Most of parameters such as plasma current, plasma horizontal position and plasma vertical position will be monitored. For the purpose of long-pulse discharge and the more precise control to plasma, the real-time operation system VxWorks is applied, instead of the behindhand and unbefitting DOS operation system. This paper describes the de- velopment process of HT-7 PF control system based on VxWorks on Intel X86 platforms. The method of using hard- ware cards in VxWorks, and the network communication with other operation systems are discussed especially. Re- sults of the comparison between VxWorks and DOS operation systems are given too.展开更多
基金the SZSTI of Shenzhen Municipal Government (JCYJ20170818141758464)the CRCG grant of the University of Hong Kong (201910160008)for providing funding support to the project.
文摘Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continues even when the electrolyte flow is stopped,leading to great Al waste.To tackle these issues,an innovative cotton-based aluminum-air battery is developed in this study.Instead of flowing alkaline solution,cotton substrate pre-deposited with solid alkaline is used,together with a small water reservoir to continuously wet the cotton and dissolve the alkaline in-situ.In this manner,the battery can be mechanically recharged by replacing the cotton substrate and refilling the water reservoir,while the thick aluminum anode can be reused for tens of times until complete consumption.The cotton substrate shows excellent ability for the storage and transportation of alkaline electrolyte,leading to a high peak power density of 73 mW cm^(-2) and a high specific energy of 930 mW h g^(-1).Moreover,the battery discharge capacity is found to be linear to the loading of pre-deposited alkaline,so that it can be precisely controlled according to the mission profile to avoid Al waste.Finally,a two-cell battery pack with common water reservoir is developed,which can provide a voltage of 2.7 V and a power output of 223.8 mW.With further scaling-up and stacking,this cotton-based Al-air battery system with low cost and high energy density is very promising for recharging miniwatt electronics in the outdoor environment.
基金supported in part by the National Natural Science Foundation of China (Grant No 10674103)the New Century Excellent Talent Foundation of the Ministry of Education (Grant No NCET-06-0384)
文摘The interactions between a two-level atom and a field via two-photon transition without rotating wave approx- imation have been investigated. We emphasize the dynamic behaviors of the atomic population inversion, the field squeezing, and the atomic dipole squeezing numerically when the field frequency varies with time in the forms of sine and rectangle. Some interesting phenomena are discovered and discussed. The good periodic character of the atomic population inversion in the standard two-photon Jaynes Cummings model is weakened by the influence of the sine field frequency modulation. The rectangular field frequency modulation can change the correlation among different oscillations suddenly and induce new collapse-revival processes of the atomic population inversion. The field squeezing increases at the beginning of time, but then decreases and loses as the time increases after it reaches the maximum due to the sine modulation. The effects of the rectangular modulation on the field squeezing depend mostly on the appearance time of the modulation. The atomic dipole squeezing is weakened under the influence of the sine or rectangular modulation. Our results indicate that it is possible to perform the dynamic controlling of the system properties by changing the parameters of the system with time. This implies that one can dynamically control a quantum information process by choosing the system modulation properly.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575131).
文摘We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system.The tested liquids were deionised water and CuSO_(4),CuC_(l2),NaHCO_(3),Na_(2)CO_(3) and NaCl solutions.The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases.The applied electric field alters the dipole moment of water molecules in the electrolyte solution,which affects the vibration and rotation of the whole water molecules,breaks the hydrogen bonds in the water,increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.
基金Supported by the National Key Program for S&T Research and Development under Grant No 2016YFA0401100the National Basic Research Program of China under Grant No 2013CB922201the National Natural Science Foundation of China under Grant Nos 11504215,11374197,11334009 and 11425414
文摘The three-dimensional electron-electron correlation in an elliptically polarized laser field is investigated based on a semiclassical model. Asymmetry parameter α of the correlated electron momentum distribution is used to quantitatively describe the electron-electron correlation. The dependence of α on elliptieity e is totally different in three directions. For the z direction (maJor polarization direction), α first increases and reaches a maximum at ε = 0.275, then it decreases quickly. For the y direction in which the laser field is always absent, the ellipticity has a minor effect, and the asymmetry parameter fluctuates around α = -0.15. However, for the x direction (minor polarization direction), α increases monotonously with ellipticity though starts from the same value as in the y direction when ε = 0. The behavior of α in the x direction actually indicates a transformation from the Coulomb interaction dominated correlation to the laser field dominated correlation. Therefore, our work provides an efficient way to control the three-dimensional electron electron correlation via an elliptically polarized intense laser field.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20140588the Research Grant Council of Hongkong under Grant No HKU7058/11P+1 种基金the CRF of the Research Grant Council of Hongkong under Grant No HKU-8/11Gthe National Basic Research Program of China under Grant No 2011CB922103
文摘We propose the realization of Majorana fermions (MFs) on the edges of a two-dimensional topological insulator in the proximity with s-wave superconductors and in the presence of transverse exchange field h. It is shown that there appear a pair of MFs localized at two junctions and that a reverse in the direction of h can lead to permutation of two MFs. With decreasing h, the MF states can either be fused or form one Dirac fermion on the π-junctions, exhibiting a topological phase transition. This characteristic can be used to detect physical states of MFs when they are transformed into Dirac fermions MFs is also given. localized on the π-junction. A condition of decoupling two
文摘We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00200the National Natural Science Foundation of China under Grant No 11074244+3 种基金ARO(W911NF-12-1-0334)DARPA-YFA(N66001-10-1-4025)AFOSR(FA9550-11-1-0313)NSF-PHY(1104546)
文摘We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a nmch easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.
基金funding by the National Natural Science Foundation of China (No. 51574279)Outstanding Youth Science Foundation of Chongqing China (No. cstc2013jcyjjq90001)Open project by State Key Laboratory of Coal Mine Disaster Dynamics and Control Chongqing University (No. 2011DA105287-FW201302)
文摘Spontaneous combustion of coal seam has been and continues to be a big problem in coal mines. It could pose great threat to the safety of the whole mine and all miners, especially when it occurs in or nearby coal mines. Besides, environment of area surrounded mines during combustion can be threatened where large amount of toxic gases including CO_2, CO, SO_2 and H_2S can be leased by fire in mine. Hence, it is important and significant for scholars to study the controlling and preventing of the coal seam fire. In this paper, the complicated reasons for the occurrence and development of spontaneous combustion in coal seam are analysed and different models under various air leakage situations are built as well. Based on the model and approximately calculation, the difficulty of fire extinguishment in coal seam is pointed out as the difficulty and poor effect to remove the large amount of heat released. Detailed measurements about backfilling and case analyses are also provided on the basis of the recent ten years' practice of controlling spontaneous combustion in coal seams in China. A technical fire prevention and control method has been concluded as five steps including detection, prevention, sealing, injection and pressure adjustment. However, various backfill materials require different application and environmental factors, so in this paper, analyses and discussion about the effect and engineering application of prevention of spontaneous combustion are provided according to different backfilling technologies and methods. Once the aforementioned fire prevention can be widely applied and regulated in mines, green mining will be achievable concerning mine fire prevention and control.
文摘According to the construction of current coal mine monitoring and control systems in China, the paper proposes three kinds of applicable schemes of integrating PLC and DCS systems with field bus technology to digitize the system and to improve the flexibility and extent of the system. Essentially, the paper introduces the integration of FCS on I/O layers. Based on a real coal mine safety-monitoring and control system applied with a CAN field bus, the major technology of system relays and extensions is discussed. We believe that one of the most applicable methods is currently replacing the connection between function-stations and field-sensors with a CAN bus on I/0 layers for system integration.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea by the Korea government(MEST)(grant number NRF2019R1A2C4069922)the“LG Research Fund for New Faculty”by LG Chem。
文摘Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)derived porous carbon via controlling the proportion of both water in a mixed solvent(dimethylformamide and water)and ligand in MOF-5 precursors(metal and ligand),which is categorized by its morphology(i.e.Cracked stone(closed),Tassel(open)and Intermediate(semi-open)).For example,decrease in water and increase in ligand content induce Cracked stone WDMs which showed the highest specific surface area(2742-2990 m^(2)/g)and pore volume(2.81-3.28 cm^(3)/g)after carbonization.Morphological effect of carbonized WDMs(CWDMs)on battery performance was examined by introducing electrolytes with different sulfur reduction mechanisms(i.e.DOL/DME and ACN_(2) LiTFSITTE):Closed framework effectively confines polysulfide,whereas open framework enhances electrolyte accessibility.The initial capacities of the batteries were in the following order:Cracked stone>Intermediate>Tassel for DOL/DME and Intermediate>Tassel>Cracked stone for ACN_(2) LiTFSI-TTE.To note,Intermediate CWDM exhibited the highest initial capacity and retained capacity after 100 cycles(1398 and 747 mAh/g)in ACN_(2) LiTFSI-TTE electrolyte having advantages from both open and closed frameworks.In sum,we could correlate cathode morphology(openness and pore structure)and electrolyte type(i.e.polysulfide solubility)with lithium-sulfur battery performance.
基金supported by International Cooperation Project of Ministry of Science and Technology of China(4.1.P2.CN.01/1A)
文摘Sequential control applied to the International Thermonuclear Experimental Re- actor (ITER) poloidal field converter system for the purpose of reactive power reduction is the subject of this investigation. Due to the inherent characteristics of thyristor-based phase-controlled converter, the poloidal field converter system consumes a huge amount of reactive power from the grid, which subsequently results in a voltage drop at the 66 kV busbar if no measure is taken. The installation of a static var compensator rated for 750 MVar at the 66 kV busbax is an essential way to compensate reactive power to the grid, which is the most effective measure to solve the problem. However, sequential control of the multi-series converters provides an additional method to improve the natural power factor and thus alleviate the pressure of reactive power demand of the converter system without any additional cost. In the present paper, by comparing with the symmetrical control technique, the advantage of sequential control in reactive power consumption is highlighted. Simulation results based on SIMULINK are found in agreement with the theoretical analysis.
基金the Natural Science Foundation of Hubei Province (No.2005ABA301)
文摘A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874169 and 10674125)the National Basic Research Program of China (Grant No. 2007CB925200)S.-M. Li is grateful to Deutscher Akademischer Austauschdienst and Deutsche Forschungsgemeinschaft for financial support during his stay in Germany
文摘This paper theoretically investigates the coherent phase control in electron-argon scattering assisted by a bichro- matic laser field. The laser field is composed of a fundamental component and its second harmonic. The incoming and out going states of electron are described by the Volkov wave functions, and the electron-target interaction is treated as a screening potential. Numerical results for differential cross section of multiphoton processes vs the phase difference between the two components of laser field are discussed for several scattering angles and impact energies.
文摘The dependences of electrochemical potential at the interface between carbon nanotubes and electrolyte upon temperature and electrolyte concentration are studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition with Si as the substrate. Four substances were tested: NaCl solution, KCl solution, water and alcohol. It is found that for NaCl and KCl solutions, at the interface, there is a large electrochemical potential which increases with temperature and is larger for an electrolyte of higher concentration. There is a significant field effect of carbon nanotubes with electrolyte as the gate, and the effect depends on the ionizability of the electrolyte. Such physicochemical property invests carbon nanotube a potential application in nanoelectronics.
基金Supported by the National Natural Science Foundation of China(52192620,52125401)。
文摘To address the key problems in the application of intelligent technology in geothermal development,smart application scenarios for geothermal development are constructed.The research status and existing challenges of intelligent technology in each scenario are analyzed,and the construction scheme of smart geothermal field system is proposed.The smart geothermal field is an organic integration of geothermal development engineering and advanced technologies such as the artificial intelligence.At present,the technology of smart geothermal field is still in the exploratory stage.It has been tested for application in scenarios such as intelligent characterization of geothermal reservoirs,dynamic intelligent simulation of geothermal reservoirs,intelligent optimization of development schemes and smart management of geothermal development.However,it still faces many problems,including the high computational cost,difficult real-time response,multiple solutions and strong model dependence,difficult real-time optimization of dynamic multi-constraints,and deep integration of multi-source data.The construction scheme of smart geothermal field system is proposed,which consists of modules including the full database,intelligent characterization,intelligent simulation and intelligent optimization control.The connection between modules is established through the data transmission and the model interaction.In the next stage,it is necessary to focus on the basic theories and key technologies in each module of the smart geothermal field system,to accelerate the lifecycle intelligent transformation of the geothermal development and utilization,and to promote the intelligent,stable,long-term,optimal and safe production of geothermal resources.
文摘This paper reviews how we have designed the upgraded poloidal field control system on HT-7 superconducting Tokmak by applying advanced computer technologies and Multivariable decoupling control theory. This paper emphasizes on designing the method of the control system,including system components and their functions.
基金Sponsored by the NSFC General Project (51177135)the Key Project of Natural Science Foundation of Shaanxi Province (2011GZ013)
文摘A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61627813,62204018,and 61571023)the Beijing Municipal Science and Technology Project(Grant No.Z201100004220002)+2 种基金the National Key Technology Program of China(Grant No.2017ZX01032101)the Program of Introducing Talents of Discipline to Universities in China(Grant No.B16001)the VR Innovation Platform from Qingdao Science and Technology Commission.
文摘Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.
文摘The PF (Poloidal Field) control system is one of the most important control systems in HT-7 Tokamak. Most of parameters such as plasma current, plasma horizontal position and plasma vertical position will be monitored. For the purpose of long-pulse discharge and the more precise control to plasma, the real-time operation system VxWorks is applied, instead of the behindhand and unbefitting DOS operation system. This paper describes the de- velopment process of HT-7 PF control system based on VxWorks on Intel X86 platforms. The method of using hard- ware cards in VxWorks, and the network communication with other operation systems are discussed especially. Re- sults of the comparison between VxWorks and DOS operation systems are given too.