期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of CsNO_3 as electrolyte additive on electrochemical property of lithium anode in rechargeable battery 被引量:4
1
作者 LIN Hua CHEN Kang-hua +2 位作者 SHUAI Yi HE Xuan GE Ke 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期719-728,共10页
Lithium metal is one of the most promising anode materials for rechargeable battery with high energy density,but its practical use is still hindered by two main problems,namely,lithium dendrite growth and low Coulombi... Lithium metal is one of the most promising anode materials for rechargeable battery with high energy density,but its practical use is still hindered by two main problems,namely,lithium dendrite growth and low Coulombic efficiency.To address the issues,cesium nitrate(CsNO3)is selected as the additive to modify the electrolyte for lithium secondary battery.Here we report electrochemical performance of lithium secondary battery with different concentration of CsNO3 as electrolyte additive.The study result demonstrates that Coulombic efficiency of Li–Cu cells and the lifetime of symmetric lithium cells contained CsNO3 additive are improved greatly.Li–Cu cell with 0.05 mol/L CsNO3 and 0.15 mol/L LiNO3 as electrolyte additive presents the best electrochemical performance,having the highest Coulombic efficiency of around 97%and the lowest interfacial resistance.With increasing the concentration of CsNO3 as electrolyte additive,the electrochemical performance of cells becomes poor.Meanwhile,the morphology of lithium deposited films with CsNO3-modified electrolyte become smoother and more uniform compared with the basic electrolyte. 展开更多
关键词 cesium nitrate lithium anode electrolyte additive Coulombic efficiency electrochemical properties MORPHOLOGY
在线阅读 下载PDF
Interfacial optimization enabling reversible and stable aqueous zinc metal batteries under harsh conditions
2
作者 SONG Ye-xin ZHONG Zi-yang +5 位作者 CHEN Man-jing DING Yi-qing ZHOU Miao LIU Zhe-xuan LIANG Shu-quan FANG Guo-zhao 《Journal of Central South University》 CSCD 2024年第12期4536-4548,共13页
Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is f... Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is far from practical application.Addressing interfacial stability issues encountered during cycling and employing interfacial optimization strategies can promote the development of safe and eco-friendly AZMBs.By introducingγ-valerolactone(GVL),which disrupts the original hydrogen bonding network of water,the electrochemical window of electrolyte is expanded,and the reactivity of water is significantly reduced.Additionally,the incorporation of GVL in Zn ion solvation alters the deposition pattern on the Zn anode surface,resulting in improved cyclic performance.The cells demonstrated excellent performance,maintaining stable over 400 h at 5 mA/cm^(2)-5 mA·h/cm^(2),and nearly 300 h in Zn||Zn symmetric cell at 80%depth of discharge(DOD).The full cells matched with NH_(4)V_(4)O_(10) could cycle over 200 cycles under the condition of high areal capacity(7 mA·h/cm^(2)),an N/P ratio of 1.99 and an E/C ratio of 9.3μL/(mA·h). 展开更多
关键词 electrolyte additive Zn anode N/P ratio E/C ratio aqueous zinc metal batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部