In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filamen...In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filament chemical vapor deposition method.The effects of processing parameters,such as film thickness,current density,supporting electrolyte concentration,initial solution pH,solution temperature,and initial dye concentration,were evaluated following the variation in the degradation efficiency.The microstructure and the electrochemical property of BDD were characterized by scanning electron microscopy,Raman spectroscopy,and electrochemical workstation;and the degradation of X-GN was estimated using UV-Vis spectrophotometry.Further,the results indicated that the film thickness of BDD had a significant impact on the electrolysis of X-GN.After 3 h of treatment,100%color and 63.2%total organic carbon removal was achieved under optimized experimental conditions:current density of 100 mA/cm2,supporting electrolyte concentration of 0.05 mol/L,initial solution pH 3.08,and solution temperature of 60°C.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
基金Project(2016YEB0301402) supported by the National Key Research and Development Program of ChinaProject(51601226) supported by the National Natural Science Foundation of China+1 种基金Project supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject supported by State Key Laboratory of Powder Metallurgy,China
文摘In this study,the electrochemical oxidation of reactive brilliant orange X-GN dye with a boron-doped diamond(BDD)anode was investigated.The BDD electrodes were deposited on the niobium(Nb)substrates by the hot filament chemical vapor deposition method.The effects of processing parameters,such as film thickness,current density,supporting electrolyte concentration,initial solution pH,solution temperature,and initial dye concentration,were evaluated following the variation in the degradation efficiency.The microstructure and the electrochemical property of BDD were characterized by scanning electron microscopy,Raman spectroscopy,and electrochemical workstation;and the degradation of X-GN was estimated using UV-Vis spectrophotometry.Further,the results indicated that the film thickness of BDD had a significant impact on the electrolysis of X-GN.After 3 h of treatment,100%color and 63.2%total organic carbon removal was achieved under optimized experimental conditions:current density of 100 mA/cm2,supporting electrolyte concentration of 0.05 mol/L,initial solution pH 3.08,and solution temperature of 60°C.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.