期刊文献+
共找到1,125篇文章
< 1 2 57 >
每页显示 20 50 100
Performance analysis of electro-optic sampling detection technique with thin GaSe crystal in mid-infrared band
1
作者 DU Hai-Wei WANG Jing-Yi +1 位作者 SUN Chang-Ming LI Qiang-Shuang 《红外与毫米波学报》 北大核心 2025年第3期358-364,共7页
Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band lim... Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well. 展开更多
关键词 electro-optic sampling GASE MID-INFRARED few-cycle laser pulse
在线阅读 下载PDF
Moving object detection in framework of compressive sampling 被引量:1
2
作者 Jing Li JunzhengWang Wei Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期740-745,共6页
Compressive sensing is a revolutionary idea proposed recently to achieve much lower sampling rate for signals.In the image application with limited resources the camera data can be stored and processed in compressed f... Compressive sensing is a revolutionary idea proposed recently to achieve much lower sampling rate for signals.In the image application with limited resources the camera data can be stored and processed in compressed form.An algorithm for moving object and region detection in video using a compressive sampling is developed.The algorithm estimates motion information of the moving object and regions in the video from the compressive measurements of the current image and background scene.The algorithm does not perform inverse compressive operation to obtain the actual pixels of the current image nor the estimated background.This leads to a computationally efficient method and a system compared with the existing motion estimation methods.The experimental results show that the sampling rate can reduce to 25% without sacrificing performance. 展开更多
关键词 compressive sampling compressive measurements moving object detection.
在线阅读 下载PDF
Few-shot object detection based on positive-sample improvement 被引量:1
3
作者 Yan Ouyang Xin-qing Wang +1 位作者 Rui-zhe Hu Hong-hui Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期74-86,共13页
Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few l... Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors. 展开更多
关键词 Few-shot learning Object detection sample augmentation Attention mechanism
在线阅读 下载PDF
Fast Rate Fault Detection Filter for Multirate Sampled-data Systems 被引量:3
4
作者 ZHONG Mai-Ying MA Chuan-Feng LIU Yun-Xia 《自动化学报》 EI CSCD 北大核心 2006年第3期433-437,共5页
This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant disc... This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant discrete-time one and an unknown input observer (UIO) is considered as FDF to generate residual. The design of FDF is formulated as an H∞ optimization problem and a solvable condition as well as an optimal solution are derived. The causality of the residual generator can be guaranteed so that the fast rate residual can be implemented via inverse lifting. A numerical example is included to demonstrate the feasibility of the obtained results. 展开更多
关键词 故障检测 滤波器 FDF 残差 MSD系统
在线阅读 下载PDF
A Hybrid System Approach to Robust Fault Detection for a Class of Sampled-data Systems 被引量:4
5
作者 QIU Ai-Bing WEN Cheng-Lin JIANG Bin 《自动化学报》 EI CSCD 北大核心 2010年第8期1182-1188,共7页
关键词 鲁棒故障检测 自动化系统 设计方案 采样数据
在线阅读 下载PDF
Convective clouds detection in satellite cloud image using fast fuzzy support vector machine 被引量:1
6
作者 Fei Gong Wei Jin +2 位作者 Wenzhe Tian Randi Fu Caifen He 《光电工程》 CAS CSCD 北大核心 2017年第9期872-881,共10页
Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by nois... Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection. 展开更多
关键词 《光电工程》 英文摘要 期刊 编辑工作
在线阅读 下载PDF
计算机视觉领域对抗样本检测综述 被引量:1
7
作者 张鑫 张晗 +1 位作者 牛曼宇 姬莉霞 《计算机科学》 北大核心 2025年第1期345-361,共17页
随着数据量的增加和硬件性能的提升,深度学习在计算机视觉领域取得了显著进展.然而,深度学习模型容易受到对抗样本的攻击,导致输出发生显著变化.对抗样本检测作为一种有效的防御手段,可以在不改变模型结构的前提下防止对抗样本对深度学... 随着数据量的增加和硬件性能的提升,深度学习在计算机视觉领域取得了显著进展.然而,深度学习模型容易受到对抗样本的攻击,导致输出发生显著变化.对抗样本检测作为一种有效的防御手段,可以在不改变模型结构的前提下防止对抗样本对深度学习模型造成影响.首先,对近年来的对抗样本检测研究工作进行了整理,分析了对抗样本检测与训练数据的关系,根据检测方法所使用特征进行分类,系统全面地介绍了计算机视觉领域的对抗样本检测方法;然后,对一些结合跨领域技术的检测方法进行了详细介绍,统计了训练和评估检测方法的实验配置;最后,汇总了一些有望应用于对抗样本检测的技术,并对未来的研究挑战进行展望. 展开更多
关键词 深度学习 对抗样本攻击 对抗样本检测 人工智能安全 图像分类
在线阅读 下载PDF
基于同源录波数据比对的继电保护采样回路异常检测方法 被引量:2
8
作者 戴志辉 张富泽 韩笑 《电力系统保护与控制》 北大核心 2025年第1期147-159,共13页
处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检... 处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。 展开更多
关键词 继电保护装置 采样回路 异常检测 改进DTW算法 录波数据
在线阅读 下载PDF
融合注意力和上下文信息的遥感图像小目标检测算法 被引量:2
9
作者 刘赏 周煜炜 +2 位作者 代娆 董林芳 刘猛 《计算机应用》 北大核心 2025年第1期292-300,共9页
对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提... 对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提出一种融合注意力和上下文信息的遥感图像小目标检测算法ACM-YOLO(Attention-Context-Multiscale YOLO)。首先,应用细粒度的查询感知稀疏注意力以减少小目标特征信息的丢失,从而避免漏检;其次,设计局部上下文增强(LCE)函数以更好地关注不同类别的遥感目标所需的上下文信息,从而避免误检;最后,使用加权双向特征金字塔网络(BiFPN)强化特征融合模块对遥感图像小目标的多尺度特征融合能力,从而改善算法检测效果。在DOTA数据集和NWPU VHR-10数据集上进行对比实验和消融实验,以验证所提算法的有效性和泛化性。实验结果表明,在2个数据集上所提算法的平均精确率均值(mAP)分别达到了77.33%和96.12%,而相较于YOLOv5算法,召回率分别提升了10.00和7.50个百分点。可见,所提算法能有效提升mAP和召回率,减少误检和漏检。 展开更多
关键词 遥感图像 小目标检测 稀疏采样 局部上下文信息增强 多尺度特征融合
在线阅读 下载PDF
基于机器学习的网络未知攻击检测方法研究综述
10
作者 陈良臣 傅德印 +3 位作者 刘宝旭 卢志刚 姜政伟 高曙 《信息安全研究》 北大核心 2025年第9期807-813,共7页
在网络安全威胁持续演变的复杂背景下,未知的网络攻击对数字基础设施的威胁与日俱增,基于机器学习的网络未知攻击检测技术成为研究重点.首先对入侵检测系统分类和网络未知攻击检测常用技术进行论述;其次从异常检测、开集识别和零样本学... 在网络安全威胁持续演变的复杂背景下,未知的网络攻击对数字基础设施的威胁与日俱增,基于机器学习的网络未知攻击检测技术成为研究重点.首先对入侵检测系统分类和网络未知攻击检测常用技术进行论述;其次从异常检测、开集识别和零样本学习3个维度对基于机器学习的网络未知攻击检测方法进行深入探讨,并进一步对常用数据集和关键评估指标进行总结;最后对未知攻击检测的发展趋势和挑战进行展望.可为进一步探索网络空间安全领域的新方法与新技术提供借鉴与参考. 展开更多
关键词 未知攻击检测 机器学习 异常检测 开集识别 零样本学习
在线阅读 下载PDF
基于Transformer多元注意力的钢材表面缺陷视觉检测
11
作者 韩慧健 邢怀宇 +1 位作者 张云峰 张锐 《郑州大学学报(工学版)》 北大核心 2025年第5期69-76,共8页
针对钢材表面缺陷尺度不一和现有检测算法多尺度特征处理能力较差、精度不高的问题,提出一种混合采样与多元注意力协同的钢材表面缺陷检测方法。首先,构建高效通道特征提取主干网络模块,在复杂的钢材表面背景下着重提取缺陷特征;其次,... 针对钢材表面缺陷尺度不一和现有检测算法多尺度特征处理能力较差、精度不高的问题,提出一种混合采样与多元注意力协同的钢材表面缺陷检测方法。首先,构建高效通道特征提取主干网络模块,在复杂的钢材表面背景下着重提取缺陷特征;其次,提出一种双重注意力协同的特征金字塔,扩大网络感受野,更好地捕获多尺度缺陷特征,提高对小目标的检测性能;最后,设计出一种Transformer混合采样策略,动态感知缺陷区域,提高模型的整体检测性能。在NEU-DET数据集上进行实验,结果表明:相较于基准算法DETR,所提改进算法的平均精度均值提高6.1百分点,达到81.4%,提升了模型对钢材表面缺陷检测的精度;此外,检测帧率为44.2帧/s,所提算法在检测速度和检测性能之间取得了较好的平衡。 展开更多
关键词 缺陷检测 注意力机制 TRANSFORMER 混合采样 DETR
在线阅读 下载PDF
基于深度元学习的工控系统异常检测方法
12
作者 李新春 谭新欢 +1 位作者 李琳 许驰 《计算机科学与探索》 北大核心 2025年第8期2251-2260,共10页
工控系统在不断网络化的过程中,正面临着层出不穷的新型网络攻击,导致传统异常检测方法因样本数量有限、泛化能力不足而造成检测精度低的问题。为此,采用模型无关的元学习(MAML)架构,提出基于卷积神经网络的深度元学习(D-MAML)异常检测... 工控系统在不断网络化的过程中,正面临着层出不穷的新型网络攻击,导致传统异常检测方法因样本数量有限、泛化能力不足而造成检测精度低的问题。为此,采用模型无关的元学习(MAML)架构,提出基于卷积神经网络的深度元学习(D-MAML)异常检测方法。构建D-MAML的内、外双循环异常检测架构。其中,内循环提取样本特征,外循环动态更新参数,以提高模型泛化能力,满足少样本检测需求。设计元模块增强的卷积神经网络,并基于梯度下降法更新内循环模型参数,提高特征提取能力。提出基于多步损失函数的外循环模型参数更新算法,提高算法稳定性。采用余弦退火算法动态更新外循环学习率,解决算法泛化能力不足问题。基于三个公开的数据集对DMAML进行了5分类实验验证。结果表明,D-MAML的单样本最佳准确率为67.17%,多样本最佳准确率可进一步提升到92.84%。 展开更多
关键词 工控系统 异常检测 少样本 模型无关的元学习(MAML)
在线阅读 下载PDF
类别不均衡的少样本工业产品表观缺陷检测
13
作者 王素琴 杜雨洁 +1 位作者 石敏 朱登明 《图学学报》 北大核心 2025年第3期568-577,共10页
通用的目标检测网络在缺陷样本数量较少、缺陷类别分布不均衡时,总体检测精度偏低,在缺陷样本稀少的尾部类别上检测精度更低。为此,提出了一种基于改进YOLOv8s的工业产品表观缺陷检测方法。通过在Neck网络使用幻影卷积(GSConv),降低网... 通用的目标检测网络在缺陷样本数量较少、缺陷类别分布不均衡时,总体检测精度偏低,在缺陷样本稀少的尾部类别上检测精度更低。为此,提出了一种基于改进YOLOv8s的工业产品表观缺陷检测方法。通过在Neck网络使用幻影卷积(GSConv),降低网络复杂度的同时增强网络非线性能力,以避免过拟合风险。利用聚合模块VoV-GSCSP进一步提取与融合不同层次特征,提升网络特征提取与融合能力。通过采用重加权损失函数以平衡不同类别样本的训练损失贡献,加大尾部类别样本的损失贡献占比,从而提高尾部类别缺陷的检测精度。相比基线模型,改进方法对针灸针表观缺陷检测精度mAP为93.3%,提高5.0%,样本最少的断针缺陷提升9.1%;药板表观缺陷检测精度mAP为91.4%,提高2.6%,样本最少的脏污缺陷提升3.2%。在样本较多且分布不均衡的钢材数据集上,整体缺陷检测精度mAP提高2.6%。实验表明,该改进方法在缺陷样本少且类别分布不均衡时,可有效提升工业产品表观缺陷总体检测精度,对样本稀少的尾部类别检测精度改善明显,泛化性良好。 展开更多
关键词 表观缺陷检测 少样本 类别不均衡 GSConv 重加权损失函数
在线阅读 下载PDF
改进GAN数据增强的小样本管道漏磁缺陷识别
14
作者 温江涛 闫鹏 +1 位作者 周家鑫 孙洁娣 《电子测量与仪器学报》 北大核心 2025年第6期142-153,共12页
针对复杂管道漏磁缺陷识别研究中,因实际漏磁缺陷样本数量少、差异大导致的智能识别模型在实际应用中性能不佳的问题,提出了一种基于改进生成对抗网络的数据增强方法。首先,该方法研究了多类别混合估计的方法为生成器提供原始信号的先... 针对复杂管道漏磁缺陷识别研究中,因实际漏磁缺陷样本数量少、差异大导致的智能识别模型在实际应用中性能不佳的问题,提出了一种基于改进生成对抗网络的数据增强方法。首先,该方法研究了多类别混合估计的方法为生成器提供原始信号的先验信息,改进生成器的随机噪声输入,同时在生成器网络中引入多头注意力机制以捕获全局关键特征,提高生成样本质量;然后,研究了基于变分自编码重构误差的样本筛选方法,从生成样本中选取质量更高的样本,用来改善识别模型的训练效率;最后,将筛选出的生成样本及原始样本组合构成缺陷样本数据集,实现了数据增强。为验证数据增强效果,实验中采用常用的分类方法对扩充后的漏磁缺陷信号进行分类识别,实验结果表明,改进的方法在样本量较小的情况下平均识别准确率可达93%,相比其他类似方法具有更好的性能。 展开更多
关键词 管道漏磁检测 小样本 生成对抗网络 多头注意力 多类别混合估计 样本筛选
在线阅读 下载PDF
地下水中全氟与多氟烷基化合物分析方法研究进展
15
作者 龚利强 李志鸿 +1 位作者 周波 周正元 《岩矿测试》 北大核心 2025年第4期562-575,共14页
全氟与多氟烷基化合物(PFAS)是一类人工合成的化学品,属于典型的持久性有机污染物(POPs)和新兴污染物,在全球范围内的水环境中被广泛检出,对人体健康及生态系统构成潜在威胁。地下水中的PFAS浓度通常为痕量水平,这对现有监测方法的灵敏... 全氟与多氟烷基化合物(PFAS)是一类人工合成的化学品,属于典型的持久性有机污染物(POPs)和新兴污染物,在全球范围内的水环境中被广泛检出,对人体健康及生态系统构成潜在威胁。地下水中的PFAS浓度通常为痕量水平,这对现有监测方法的灵敏度和准确性提出了严峻挑战。然而,现有的主流监测方法仍存在样品代表性不足、成本高昂、操作复杂等问题,难以全面满足实际需求,亟需进一步优化和创新。针对研究现状,本文系统梳理了近年来地下水中典型PFAS监测涉及的样品采集、样品前处理及分析检测技术研究最新进展。在样品采集领域,被动采样技术的兴起为地下水低成本持续监测提供了可能;在样品前处理领域,膜式固相萃取、分散固相萃取等新技术的引入有效地缩短了现今固相萃取法的样品前处理时间,提高了分析效率;在检测方法领域,高灵敏度的液相色谱-串联质谱法仍是PFAS定量检测的主流手段,高分辨质谱非靶向筛查使地下水中PFAS的定性识别不再依赖标准品,而传感检测等技术的运用则为地下水现场快检提供了新的手段。未来相关研究应重点关注高通量、自动化的前处理方法及灵敏、准确、特异的PFAS定性、定量检测方法的开发与完善。 展开更多
关键词 全氟与多氟烷基化合物 地下水 新污染物 样品前处理 检测方法 质谱法
在线阅读 下载PDF
基于特征表征与学习反馈的动态带钢缺陷样本筛选方法
16
作者 苑玮琦 刘文滔 李绍丽 《仪器仪表学报》 北大核心 2025年第4期240-250,共11页
带钢表面缺陷检测是保证钢铁产品质量的关键环节,实现高效准确的缺陷检测对保障产品性能具有重要意义。近年来,深度学习方法在缺陷检测领域进展显著,但在实际应用中仍面临两个问题:一方面,由于工业生产追求高良品率,导致缺陷样本获取受... 带钢表面缺陷检测是保证钢铁产品质量的关键环节,实现高效准确的缺陷检测对保障产品性能具有重要意义。近年来,深度学习方法在缺陷检测领域进展显著,但在实际应用中仍面临两个问题:一方面,由于工业生产追求高良品率,导致缺陷样本获取受限,且样本标注耗时费力;另一方面,采集的样本中可能存在冗余特征,影响模型训练效率和泛化性能。针对特征冗余问题,提出一种基于特征表征与学习反馈机制的动态样本筛选方法。首先构建包含几何形态、灰度分布及方向特征等多维特征量化模型,系统表征缺陷特征。随后,设计基于特征表征的样本筛选策略,结合特征聚类快速筛选少量具有多样性和代表性的训练样本。最后,设计基于置信度评估的动态优化策略,通过模型的学习反馈获取关键补充样本,提升特征覆盖范围,实现训练样本的自适应优化。NEU-DET数据集的实验结果表明,该方法在将训练样本数量减少52%的情况下,平均检测精度达到76.99%,与完整数据集基本持平。同时,每轮训练迭代时间减少62%,降低了计算开销,验证了方法在样本筛选与检测性能之间的有效平衡。此外,在多种主流目标检测模型上的验证结果表明,该方法在不同检测架构下均能有效提升效率并保持性能,展现出良好的适用性。 展开更多
关键词 带钢表面缺陷检测 样本筛选 特征表征 形态学特征 深度学习
在线阅读 下载PDF
基于干扰样本分布优化的工控异常检测改进SVM模型
17
作者 顾兆军 扬雪影 隋翯 《计算机科学》 北大核心 2025年第7期388-398,共11页
针对现有的工业控制系统异常检测分类方法大多无法有效处理类不平衡和重叠耦合的问题,提出了一种基于干扰样本分布优化的工控异常检测改进SVM模型(Improved SVM Model Based on Adaptive Differential Evolution with Sphere, SJADE_SV... 针对现有的工业控制系统异常检测分类方法大多无法有效处理类不平衡和重叠耦合的问题,提出了一种基于干扰样本分布优化的工控异常检测改进SVM模型(Improved SVM Model Based on Adaptive Differential Evolution with Sphere, SJADE_SVM),该模型将基于超球体覆盖的自适应差分进化过采样技术与支持向量机相结合。首先,通过改进超球体覆盖算法和构建概率公式,来识别和排除干扰样本;然后,改进合成少数派过采样技术,通过对安全样本采样,缓解类不平衡和重叠耦合问题;最后,使用自适应差分进化算法优化样本的位置和属性,同时使用SVM进行分类。在6个真实工控数据集和4个UCI公开数据集上共设计3组实验,包括与逻辑回归和高斯朴素贝叶斯等异常检测分类算法的性能对比、改善样本分布方法的实验对比以及算法的运行时间对比。实验结果表明,该模型在F-score和G-mean评价指标上分别提高了38.29%和10.54%,分类效果稳居前三,且在α=0.05的非参数双侧Wilcoxon符号秩检验和Friedman检验等统计实验中表现出显著的性能优势。 展开更多
关键词 异常检测 采样 支持向量机 重叠 自适应差分进化
在线阅读 下载PDF
多元感知协同与混合采样策略的钢轨表面缺陷检测
18
作者 彭静 高宝渠 《重庆交通大学学报(自然科学版)》 北大核心 2025年第7期41-50,共10页
针对传统方法对复杂钢轨表面较小缺陷检测精度低、检测速度慢等问题,提出一种多元感知协同与混合采样策略的钢轨表面缺陷检测算法。首先,构建改进的轻量级特征提取主干CASG-MobileNetV2,实现模型轻量化的同时,有效增强轻量级主干对缺陷... 针对传统方法对复杂钢轨表面较小缺陷检测精度低、检测速度慢等问题,提出一种多元感知协同与混合采样策略的钢轨表面缺陷检测算法。首先,构建改进的轻量级特征提取主干CASG-MobileNetV2,实现模型轻量化的同时,有效增强轻量级主干对缺陷特征的提取能力;其次,提出前景感知注意力协同特征金字塔模块,在复杂轨道场景中进行多维度缺陷特征提取,增强小目标检测效果;再次,在Transformer部分设计混合采样策略,以动态感知代替自注意力学习,从而降低模型计算量,并进一步捕获全局与局部特征信息;最后,通过前馈神经网络与匈牙利匹配算法完成缺陷检测输出。实验结果表明:笔者算法较原始DETR算法平均精度均值(mAP@0.5)提升了3.5%,达71.3%;参数量压缩44.5%;检测速率提升至43.7帧/s,为原始DETR算法的1.6倍。笔者算法的评价指标优于对比方法,能够快速准确地检测出钢轨表面缺陷。 展开更多
关键词 铁道工程 铁路运输 缺陷检测 DETR 轻量级检测 混合采样
在线阅读 下载PDF
基于条件扩散模型样本生成的小样本目标检测
19
作者 梅天灿 王亚茹 陈元豪 《电子与信息学报》 北大核心 2025年第4期1182-1191,共10页
利用生成模型为小样本目标检测提供额外样本是解决样本稀缺问题的方法之一。现有生成额外样本的方法,多关注于生成样本的多样性,而忽略了生成样本的质量和代表性。为解决这一问题,该文提出了一个新的基于数据生成的小样本目标检测框架F... 利用生成模型为小样本目标检测提供额外样本是解决样本稀缺问题的方法之一。现有生成额外样本的方法,多关注于生成样本的多样性,而忽略了生成样本的质量和代表性。为解决这一问题,该文提出了一个新的基于数据生成的小样本目标检测框架FQRS。首先,构造类间条件控制模块使得数据生成器能够学习不同类别间的关系,利用基类和新类的类间关系信息辅助模型估计新类的分布,从而提高生成样本的质量。其次,设计类内条件控制模块,利用交并比(IOU)信息限制生成样本在特征空间的位置,通过控制生成的样本更聚集于类别的中心,确保它们能够捕捉对应类别的关键特征,从而提高生成样本的代表性。在PASCAL VOC和MS COCO数据集上进行测试,在不同小样本条件下,该文提出的模型均超过当前最好的两阶段微调目标检测模型—解耦的更快区域卷积神经网络(DeFRCN)。实验验证了该文方法在小样本目标检测上具有出色的检测效果。 展开更多
关键词 小样本目标检测 深度学习 数据增强 样本生成
在线阅读 下载PDF
面向道路交通场景的高效3D目标检测
20
作者 陆军 鲁林超 +1 位作者 翟晓阳 刘霜 《智能系统学报》 北大核心 2025年第1期91-100,共10页
针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivel... 针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivelocal feature aggregator with region-based convolu-tional neural networks)架构。首先,利用随机采样方法在处理庞大点云数据时的高效性,对大场景点云数据进行下采样;然后,通过对输入点云的每个近邻点的空间位置编码,有效提高从每个点的邻域提取局部特征的能力,并利用基于注意力机制的池化规则聚合局部特征向量,获取全局特征;最后使用由多个局部空间编码单元和注意力池化单元叠加形成的扩展残差模块,来进一步增强每个点的全局特征,避免关键点信息丢失。实验结果表明,该检测算法在保留PointRCNN网络对3D目标的检测优势的同时,相比PointRCNN检测速度提升近两倍,达到16 f/s的推理速度。 展开更多
关键词 深度学习 3D目标检测 点云 随机采样 局部特征聚合 注意力机制 自动驾驶
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部