期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An optimal energy management development for various configuration of plug-in and hybrid electric vehicle 被引量:8
1
作者 Morteza Montazeri-Gh Mehdi Mahmoodi-K 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1737-1747,共11页
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai... Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions. 展开更多
关键词 plug-in and hybrid electric vehicle energy management CONFIGURATION genetic fuzzy controller fuel consumption EMISSION
在线阅读 下载PDF
Shift scheduling strategy development for parallel hybrid construction vehicles 被引量:1
2
作者 LI Tian-yu LIU Hui-ying +1 位作者 ZHANG Zhi-wen DING Dao-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期587-603,共17页
The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construct... The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construction vehicles. The effect of power distribution and direction on shift characteristics of the parallel hybrid vehicle with operating loads is evaluated, which must be considered for optimal shift control. A power distribution factor is defined to accurately describe the power distribution and direction in various parallel hybrid systems. This paper proposes a Levenberg-Marquardt algorithm optimized neural network shift scheduling strategy. The methodology contains two objective functions, it is a dynamic combination of a dynamic shift schedule for optimal vehicle acceleration, and an energy-efficient shift schedule for optimal powertrain efficiency. The study is performed on a test bench under typical operating conditions of a wheel loader. The experimental results show that the proposed strategies offer effective and competitive shift performance. 展开更多
关键词 construction vehicle hybrid electric vehicle shift scheduling strategy shift control neural network
在线阅读 下载PDF
Look-ahead horizon-based energy optimization with traffic prediction for connected HEVs
3
作者 XU Fu-guo SHEN Tie-long 《控制理论与应用》 北大核心 2025年第8期1534-1542,共9页
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec... With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed. 展开更多
关键词 look-ahead horizon connected and automated vehicle(CAV) hybrid electric vehicle(HEV) energy efficiency optimization traffic prediction
在线阅读 下载PDF
Supervisory control of the hybrid off-highway vehicle for fuel economy improvement using predictive double Q-learning with backup models 被引量:1
4
作者 SHUAI Bin LI Yan-fei +2 位作者 ZHOU Quan XU Hong-ming SHUAI Shi-jin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2266-2278,共13页
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi... This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme. 展开更多
关键词 supervisory charge-sustaining control hybrid electric vehicle reinforcement learning predictive double Q-learning
在线阅读 下载PDF
An investigation of cam-roller mechanism applied in sphere cam engine
5
作者 张雷 潘存云 +2 位作者 徐小军 徐海军 张正洲 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期825-833,共9页
As an alternative power source for hybrid electrical vehicle(HEV), electric generating system(EGS) driven by sphere cam engine(SCE) is said to own higher power density and integration. In this work, the structure and ... As an alternative power source for hybrid electrical vehicle(HEV), electric generating system(EGS) driven by sphere cam engine(SCE) is said to own higher power density and integration. In this work, the structure and working principle of EGS were introduced, based on which the advantages of EGS were displayed. The profile of sphere cam was achieved after the desired motion of piston was given. After establishing the dynamic model of power transmission mechanism, the characteristics of cam-roller mechanism were studied. The results show that the optimal cam profile of SCE is a sinusoid curve which has two peaks and two valleys and a mean pressure angle of 47.19°. Because of the special cam shape, the trace of end surface center of piston is an eight-shape curve on a specific sphere surface. SCE running at speed of 3000 r/min can generate the power of 33.81 kW, which could satisfy the need of HEVs. However, the force between cylinder and piston skirt caused by Coriolis acceleration can reach up to 1182 N, which leads to serious wear between cylinder liner and piston skirt and may shorten the lifespan of SCE. 展开更多
关键词 sphere cam engine hybrid electrical vehicle cam-roller mechanism kinetic analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部