In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
The National Independent Innovation Demonstration Zone has been assigned the unique mission of demonstrating and leading national innovation and playing a key supportive role in enhancing green innovation.Based on the...The National Independent Innovation Demonstration Zone has been assigned the unique mission of demonstrating and leading national innovation and playing a key supportive role in enhancing green innovation.Based on the sample data of A-share listed companies in China from 2007 to 2021,we apply a multi-period difference-in-differences model to analyze whether the implementation of the National Independent Innovation Demonstration Zone policies plays a leverage effect or a crowd out effect on the green innovation efficiency of enterprises and systematically test the regulatory mechanism of government grants and media attention in the process of this influence.The empirical results show that the imple-mentation of the National Independent Innovation Demonstration Zone policies has a positive impact on the green innovation efficiency of enterprises and that the green innovation induced by this reform is not the leverage effect of additional R&D investment on the basis of the existing innovation activities of enterprises but rather the result of the reallocation of resources to crowd out existing non-green innovation.It is further found that government grants and media attention positively moderate the positive driving effect of National Independent Innovation Demonstration Zone policies on the green innovation efficiency of enterprises.展开更多
Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate...Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.展开更多
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di...Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re...Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.展开更多
The present study focused on analyzing the technical efficiency office farms in southwest of Niger. The data from January to March 2015 survey of 148 ms in three districts of south-western of Niger were analyzed by us...The present study focused on analyzing the technical efficiency office farms in southwest of Niger. The data from January to March 2015 survey of 148 ms in three districts of south-western of Niger were analyzed by using DEA-Tobit two-step method. In the f'ust step, data envelopment analysis (DEA) was applied to estimate technical, pure technical and scale efficiency. In the second step, Tobit regression was used to identify factors affecting technical efficiency. The results showed that rice producers in southwest of Niger could reduce their inputs by 52% and still produce the same level of rice output. The Tobit regression showed that factors, such as farm size, experience in rice farming, membership of cooperative, main occupation and land ownership had a direct impact on technical efficiency.展开更多
Constant envelope with a fractional Fourier transformorthogonal frequency division multiplexing(CE-FrFT-OFDM)is a special case of a constant envelope OFDM(CE-OFDM),both being energy efficient wireless communication te...Constant envelope with a fractional Fourier transformorthogonal frequency division multiplexing(CE-FrFT-OFDM)is a special case of a constant envelope OFDM(CE-OFDM),both being energy efficient wireless communication techniques with a 0 dB peak to average power ratio(PAPR).However,with the proper selection of fractional order,the first technique has a high bit error rate(BER)performance in the frequency-time selective channels.This paper performs further analysis of CE-FrFT-OFDM by examining its spectral efficiency(SE)and energy efficiency(EE)and compare to the famous OFDM and FrFT-OFDM techniques.Analytical and comprehensive simulations conducted show that,the CE-FrFT-OFDM has five times the EE of OFDM and FrFT-OFDM systems with a slightly less SE.Increasing CE-FrFT-OFDM’s transmission power by increasing its amplitude to 1.7 increases its SE to match that of the OFDM and FrFT-OFDM systems while slightly reducing its EE by 20%to be four times that of OFDM and FrFTOFDM systems.OFDM and FrFT-OFDM’s amplitude fluctuations cause rapid changing output back-off(OBO)power requirements and further reduce power amplifier(PA)efficiency while CE-FrFTOFDM stable operational linear range makes it a better candidate and outperforms the other techniques when their OBO exceeds 1.7.Higher EE and low BER in time-frequency selective channel are attracting features for CE-FrFT-OFDM deployment in mobile devices.展开更多
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g...The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.展开更多
To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deterio...To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.展开更多
This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient ou...This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient outputs.The increased outputs are solved by linear programming using data envelopment analysis efficiency theories,wherein a new sample is introduced whose inputs are equal to the budget in the issue No.n + 1 and outputs are forecasted by the GM(1,N) model.The shortcoming in the existing methods that the forecasted efficient outputs may be less than the possible actual outputs according to developing trends of input-output rate in the periods of pre-n is overcome.The new prediction method provides decision-makers with more decisionmaking information,and the initial conditions are easy to be given.展开更多
The evaluation system of smart ammunition warhead overall efficiency has been established in this paper. Allkinds of evaluation methods have been analyzed. Having led the concept of hierarchical structure into techniq...The evaluation system of smart ammunition warhead overall efficiency has been established in this paper. Allkinds of evaluation methods have been analyzed. Having led the concept of hierarchical structure into technique for orderpreference by similarity to ideal solution (TOPSIS) method, we put forward the step TOPSIS method which is suitable forevaluating the overall efficiency of smart ammunition warheads. In the calculation of index weight, the graded weight cal-culus is put forward which hardly relies on the subjectivity of decision-makers and can reflect the sensitivity and compatibili-ty of the index. In the graded weight calculation, the proportional-arithmetic weight value calculus and sensitivity-compati-bility weight value calculus are given respectively.展开更多
Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority ...Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority averagely,and the other is to use cluster analysis to assign experts' priority.The results show that,1) Different expert's priority assigns result in great different weights of indicators in building energy efficiency assessment,therefore,the method of assigning experts' priority should be taken into account carefully while weighting indicators of building energy efficiency assessment using Group AHP;2) Three indicators are found to be overwhelmingly important in residential building energy efficiency assessment in the hot summer and cold winter zone in China.They are 'Outdoor & indoor shadow','Heating & air-conditioning facilities' and 'Insulation of envelope';3) The method combining cluster analysis with Group AHP to weight indicator of building energy efficiency assessment has the advantage of finding overwhelming important indicator,whereas,some less important indicators have a tendency to be ignored.A useful reference is provided for building energy conservation including policy revision and energy efficient residential building design.展开更多
In order to enhance the atomization efficiency of atomizer, a new type of wind-spray dust controller combining the rotary-atomization and colliding broken of droplets was designed by the method of opening the water ci...In order to enhance the atomization efficiency of atomizer, a new type of wind-spray dust controller combining the rotary-atomization and colliding broken of droplets was designed by the method of opening the water circulation within the blades. The experiment test for dust controller was conducted by adjusting the following parameters: rotating speed, diversion hole-exit diameter, and colliding tooth angle. Results show that the atomization efficiency increases firstly then decreases with them. And the optimal parameters are obtained with rotating speed 1500-2200 r/min, diversion hole-exit diameter 2-2.5 mm and colliding tooth angle 30°-40°, and under these conditions the corresponding atomization efficiency tops to 95%. Then, the atomization situation under the optimal parameters is held from the aspect of simulation internal flow field and the results of droplet size(30-80 μm) are got, which indicates that the conclusion on the optimized parameters of dust controller is reasonable. The collecting efficiencies of different dust concentrations are determined, ranging from 85% to 98.4%, which shows that the designed dust controller can obtain a good atomizing effect and achieve well dustfall efficiency for the wetting dust control of coal mine.展开更多
Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is...Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is greater than two tonnes of lint per hectare due to improved plant genetics and crop management. However, this average yield is well below the yield that would be expected from the amount of N fertiliser used. It is clear from the recent studies that across all growing regions, conversion of fertiliser N into lint is not uniformly occurring at application rates greater than 200-240 kg·hm;of N. This indicates that factors other than N availability are limiting yield, and that the observed nitrogen fertiliser use efficiency(NFUE) values may be caused by subsoil constraints such as sodicity and compaction. There is a need to investigate the impact of subsoil constraints on yield and NFUE.Gains in NFUE will be made through improved N fertiliser application timing, better targeting the amount of fertiliser applied for the expected yield, and improved soil N management. There is also a need to improve the ability and confidence of growers to estimate the contribution of soil N mineralisation to the crop N budget. Many Australian studies including data that could theoretically be collated in a meta-analysis suggest relative NFUE values as a function of irrigation technique; however, with the extensive list of uncontrolled variables and few studies using non-furrow irrigation, this would be a poor substitute for a single field-based study directly measuring their efficacies. In irrigated cotton, a re-examination of optimal NFUE is due because of the availability of new varieties and the potential management and long-term soil resilience implications of the continued removal of mineralised soil N suggested by high NFUE values. NFUE critical limits still need to be derived for dryland systems.展开更多
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ...Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.展开更多
In this paper,an improved discharging circuit was proposed to quicken the decay of the current in the drive coil in a reluctance accelerator when the armature reaches the center of the coil.The aim of this is to preve...In this paper,an improved discharging circuit was proposed to quicken the decay of the current in the drive coil in a reluctance accelerator when the armature reaches the center of the coil.The aim of this is to prevent the suck-back effect caused by the residual current in drive coil.The method is adding a reverse charging branch with a small capacitor in the traditional pulsed discharging circuit.The results under the traditional circuit and the improved circuit were compared in a simulation.The experiment then verified the simulations and they had good agreement.Simulation and experiment both demonstrated the improved circuit can effectively prevent the suck-back effect and increase the efficiency.At the voltage of 800 V,an efficiency increase of 36.34% was obtained.展开更多
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
基金supported by the National Natural Science Foundation of China(72474034)the Young Elite Scientists Sponsorship Program by SAST(20240123)+1 种基金Humanities and Social Science Fund of Ministry of Education of China(21YJC630037,21YJC630057)Social Science Foundation of Xi’an(25JX218).
文摘The National Independent Innovation Demonstration Zone has been assigned the unique mission of demonstrating and leading national innovation and playing a key supportive role in enhancing green innovation.Based on the sample data of A-share listed companies in China from 2007 to 2021,we apply a multi-period difference-in-differences model to analyze whether the implementation of the National Independent Innovation Demonstration Zone policies plays a leverage effect or a crowd out effect on the green innovation efficiency of enterprises and systematically test the regulatory mechanism of government grants and media attention in the process of this influence.The empirical results show that the imple-mentation of the National Independent Innovation Demonstration Zone policies has a positive impact on the green innovation efficiency of enterprises and that the green innovation induced by this reform is not the leverage effect of additional R&D investment on the basis of the existing innovation activities of enterprises but rather the result of the reallocation of resources to crowd out existing non-green innovation.It is further found that government grants and media attention positively moderate the positive driving effect of National Independent Innovation Demonstration Zone policies on the green innovation efficiency of enterprises.
基金supported by the NSFC Basic Science Center Program for"Multi-scale Problems in Nonlinear Mechanics" (Grant No.11988102)the NSFC (Grant Nos.U2141204,12172367)+2 种基金the Key Research Program of the Chinese Academy of Sciences (Grant No.ZDRW-CN-2021-2-3)the National Key Research and Development Program of China (Grant No.2022YFC3320504-02)the opening project of State Key Laboratory of Explosion Science and Technology (Grant No.KFJJ21-01 and No.KFJJ18-14 M)。
文摘Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.
基金financially supported by the National Natural Science Foundation of China through Grant Nos.12372338 and U2241272the Natural Science Foundation of Shaanxi Province of China through Grant Nos.2023-JC-YB-352 and 2022JZ-20+1 种基金the Guangdong Basic and Applied Basic Research Foundation through Grant No.2023A1515011663the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University through Grant No.PF2023010。
文摘Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302435 and 12221002)。
文摘Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.
文摘The present study focused on analyzing the technical efficiency office farms in southwest of Niger. The data from January to March 2015 survey of 148 ms in three districts of south-western of Niger were analyzed by using DEA-Tobit two-step method. In the f'ust step, data envelopment analysis (DEA) was applied to estimate technical, pure technical and scale efficiency. In the second step, Tobit regression was used to identify factors affecting technical efficiency. The results showed that rice producers in southwest of Niger could reduce their inputs by 52% and still produce the same level of rice output. The Tobit regression showed that factors, such as farm size, experience in rice farming, membership of cooperative, main occupation and land ownership had a direct impact on technical efficiency.
文摘Constant envelope with a fractional Fourier transformorthogonal frequency division multiplexing(CE-FrFT-OFDM)is a special case of a constant envelope OFDM(CE-OFDM),both being energy efficient wireless communication techniques with a 0 dB peak to average power ratio(PAPR).However,with the proper selection of fractional order,the first technique has a high bit error rate(BER)performance in the frequency-time selective channels.This paper performs further analysis of CE-FrFT-OFDM by examining its spectral efficiency(SE)and energy efficiency(EE)and compare to the famous OFDM and FrFT-OFDM techniques.Analytical and comprehensive simulations conducted show that,the CE-FrFT-OFDM has five times the EE of OFDM and FrFT-OFDM systems with a slightly less SE.Increasing CE-FrFT-OFDM’s transmission power by increasing its amplitude to 1.7 increases its SE to match that of the OFDM and FrFT-OFDM systems while slightly reducing its EE by 20%to be four times that of OFDM and FrFTOFDM systems.OFDM and FrFT-OFDM’s amplitude fluctuations cause rapid changing output back-off(OBO)power requirements and further reduce power amplifier(PA)efficiency while CE-FrFTOFDM stable operational linear range makes it a better candidate and outperforms the other techniques when their OBO exceeds 1.7.Higher EE and low BER in time-frequency selective channel are attracting features for CE-FrFT-OFDM deployment in mobile devices.
基金Project(2009ZX07315-005) supported by the National Water Pollution Controlled and Treatment Great Special of China
文摘The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.
基金Project(71101155)supported by the National Natural Science Foundation of ChinaProject(2015JJ2184)supported by the Natural Science Foundation of Hunan Province,China
文摘To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.
基金supported by the Research Start Funds for Introducing High-level Talents of North China University of Water Resources and Electric Power
文摘This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient outputs.The increased outputs are solved by linear programming using data envelopment analysis efficiency theories,wherein a new sample is introduced whose inputs are equal to the budget in the issue No.n + 1 and outputs are forecasted by the GM(1,N) model.The shortcoming in the existing methods that the forecasted efficient outputs may be less than the possible actual outputs according to developing trends of input-output rate in the periods of pre-n is overcome.The new prediction method provides decision-makers with more decisionmaking information,and the initial conditions are easy to be given.
文摘The evaluation system of smart ammunition warhead overall efficiency has been established in this paper. Allkinds of evaluation methods have been analyzed. Having led the concept of hierarchical structure into technique for orderpreference by similarity to ideal solution (TOPSIS) method, we put forward the step TOPSIS method which is suitable forevaluating the overall efficiency of smart ammunition warheads. In the calculation of index weight, the graded weight cal-culus is put forward which hardly relies on the subjectivity of decision-makers and can reflect the sensitivity and compatibili-ty of the index. In the graded weight calculation, the proportional-arithmetic weight value calculus and sensitivity-compati-bility weight value calculus are given respectively.
基金Project(2010R10036) supported by the Science and Technology Department of Zhejiang Province, China
文摘Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority averagely,and the other is to use cluster analysis to assign experts' priority.The results show that,1) Different expert's priority assigns result in great different weights of indicators in building energy efficiency assessment,therefore,the method of assigning experts' priority should be taken into account carefully while weighting indicators of building energy efficiency assessment using Group AHP;2) Three indicators are found to be overwhelmingly important in residential building energy efficiency assessment in the hot summer and cold winter zone in China.They are 'Outdoor & indoor shadow','Heating & air-conditioning facilities' and 'Insulation of envelope';3) The method combining cluster analysis with Group AHP to weight indicator of building energy efficiency assessment has the advantage of finding overwhelming important indicator,whereas,some less important indicators have a tendency to be ignored.A useful reference is provided for building energy conservation including policy revision and energy efficient residential building design.
基金Project(U1261107)supported by the Joint Funds of the National Natural Science Foundation of China
文摘In order to enhance the atomization efficiency of atomizer, a new type of wind-spray dust controller combining the rotary-atomization and colliding broken of droplets was designed by the method of opening the water circulation within the blades. The experiment test for dust controller was conducted by adjusting the following parameters: rotating speed, diversion hole-exit diameter, and colliding tooth angle. Results show that the atomization efficiency increases firstly then decreases with them. And the optimal parameters are obtained with rotating speed 1500-2200 r/min, diversion hole-exit diameter 2-2.5 mm and colliding tooth angle 30°-40°, and under these conditions the corresponding atomization efficiency tops to 95%. Then, the atomization situation under the optimal parameters is held from the aspect of simulation internal flow field and the results of droplet size(30-80 μm) are got, which indicates that the conclusion on the optimized parameters of dust controller is reasonable. The collecting efficiencies of different dust concentrations are determined, ranging from 85% to 98.4%, which shows that the designed dust controller can obtain a good atomizing effect and achieve well dustfall efficiency for the wetting dust control of coal mine.
基金funded by the Australian Government Department of Agriculture and Water Resourcesthe Cotton Research and Development Corporation's Rural Research and Development for Profit Project "More profit from nitrogen:enhancing the nutrient use efficiency of intensive cropping and pasture systems"funded by the Cotton Research and Development Corporation's PhD scholarship
文摘Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is greater than two tonnes of lint per hectare due to improved plant genetics and crop management. However, this average yield is well below the yield that would be expected from the amount of N fertiliser used. It is clear from the recent studies that across all growing regions, conversion of fertiliser N into lint is not uniformly occurring at application rates greater than 200-240 kg·hm;of N. This indicates that factors other than N availability are limiting yield, and that the observed nitrogen fertiliser use efficiency(NFUE) values may be caused by subsoil constraints such as sodicity and compaction. There is a need to investigate the impact of subsoil constraints on yield and NFUE.Gains in NFUE will be made through improved N fertiliser application timing, better targeting the amount of fertiliser applied for the expected yield, and improved soil N management. There is also a need to improve the ability and confidence of growers to estimate the contribution of soil N mineralisation to the crop N budget. Many Australian studies including data that could theoretically be collated in a meta-analysis suggest relative NFUE values as a function of irrigation technique; however, with the extensive list of uncontrolled variables and few studies using non-furrow irrigation, this would be a poor substitute for a single field-based study directly measuring their efficacies. In irrigated cotton, a re-examination of optimal NFUE is due because of the availability of new varieties and the potential management and long-term soil resilience implications of the continued removal of mineralised soil N suggested by high NFUE values. NFUE critical limits still need to be derived for dryland systems.
基金Project(MSV-2013-09)supported by State Key Laboratory of Mechanical System and Vibration,China
文摘Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.
基金This work was supported by the Fundamental Research Funds for the Central Universities[Grant number 2019XJ01].
文摘In this paper,an improved discharging circuit was proposed to quicken the decay of the current in the drive coil in a reluctance accelerator when the armature reaches the center of the coil.The aim of this is to prevent the suck-back effect caused by the residual current in drive coil.The method is adding a reverse charging branch with a small capacitor in the traditional pulsed discharging circuit.The results under the traditional circuit and the improved circuit were compared in a simulation.The experiment then verified the simulations and they had good agreement.Simulation and experiment both demonstrated the improved circuit can effectively prevent the suck-back effect and increase the efficiency.At the voltage of 800 V,an efficiency increase of 36.34% was obtained.