The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress field...The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress fields and basement tectonics are two fundamental factors to control the cover tectonic framework. This paper uses the finite-element method with a elastic-plastic pIan problem model to simulate the three periods of stress fields resulting from field geological study’ Based on these works, the formation and evolution of tectonic framework of Lu’ an mining area have been discussed.展开更多
This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference fie...This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.展开更多
A new polarization rotator based on the silica photonic crystal fiber is proposed. The proposed polarization rotator photonic crystal fiber (PR-PCF) possesses a triangle jigsaw-shape core region. The full-vector fin...A new polarization rotator based on the silica photonic crystal fiber is proposed. The proposed polarization rotator photonic crystal fiber (PR-PCF) possesses a triangle jigsaw-shape core region. The full-vector finite-element method is used to analyze the phenomenon of polarization conversion between the quasi-TE and quasi-TM modes. Numerical simulations show that the wavelengths of 1.31 μm and 1.55 μm are converted with a nearly 100% polarization conversion ratio with their matched coupling length and has a relatively strong realistic fabrication tolerance - 100 nm on the y axis and 50 nm on the x axis. The full vectorial finite difference beam propagation method is used to confirm the performance of the proposed PR-PCF.展开更多
We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned subst...We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned substrate is nonuniform,which is far different from that in a planar substrate. Comparing with the planar substrate, the thermal stress is significantly reduced for the Ga As layer on the patterned substrate. The effects of the width of the V-groove, the thickness, and the width of the SiO_(2) mask on the thermal stress are studied. It is found that the SiO_(2) mask and V-groove play a crucial role in the stress of the Ga As layer on Si substrate. The results indicate that when the width of V-groove is 50 nm, the width and the thickness of the SiO_(2) mask are both 100 nm, the Ga As layer is subjected to the minimum stress. Furthermore,Comparing with the planar substrate, the average stress of the Ga As epitaxial layer in the growth window region of the patterned substrate is reduced by 90%. These findings are useful in the optimal designing of growing high-quality Ga As films on patterned Si substrates.展开更多
The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the s...The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy, defined as the energy difference between the ground electronic and the ground heavy-hole subbands, increases with the increasing QR inner diameter regardless of the temperature, while the interband energy decreases with the increasing QR height, This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model, in the framework of the finite element method and the theory of elasticity of solids, shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.展开更多
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
文摘The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress fields and basement tectonics are two fundamental factors to control the cover tectonic framework. This paper uses the finite-element method with a elastic-plastic pIan problem model to simulate the three periods of stress fields resulting from field geological study’ Based on these works, the formation and evolution of tectonic framework of Lu’ an mining area have been discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505074)the National Key Basic Research Program of China(Grant No.2013CBA01703)the Hong Liu Young Teachers Training Program Funded Projects of Lanzhou University of Technology(Grant No.Q201509)
文摘This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274181,10974100,61203204,and 10674075)the Doctoral Scientific Fund Project of the Ministry of Education of China(Grant No.20120031110033)the Tianjin Key Program of Application Foundations and Future Technology Research Project,China(Grant No.10JCZDJC24300)
文摘A new polarization rotator based on the silica photonic crystal fiber is proposed. The proposed polarization rotator photonic crystal fiber (PR-PCF) possesses a triangle jigsaw-shape core region. The full-vector finite-element method is used to analyze the phenomenon of polarization conversion between the quasi-TE and quasi-TM modes. Numerical simulations show that the wavelengths of 1.31 μm and 1.55 μm are converted with a nearly 100% polarization conversion ratio with their matched coupling length and has a relatively strong realistic fabrication tolerance - 100 nm on the y axis and 50 nm on the x axis. The full vectorial finite difference beam propagation method is used to confirm the performance of the proposed PR-PCF.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874148,61974141,and 61674020)the Beijing Natural Science Foundation,China(Grant No.4192043)+1 种基金the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(Grant No.IPOC2018ZT01)the 111 Project of China(Grant No.B07005)。
文摘We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned substrate is nonuniform,which is far different from that in a planar substrate. Comparing with the planar substrate, the thermal stress is significantly reduced for the Ga As layer on the patterned substrate. The effects of the width of the V-groove, the thickness, and the width of the SiO_(2) mask on the thermal stress are studied. It is found that the SiO_(2) mask and V-groove play a crucial role in the stress of the Ga As layer on Si substrate. The results indicate that when the width of V-groove is 50 nm, the width and the thickness of the SiO_(2) mask are both 100 nm, the Ga As layer is subjected to the minimum stress. Furthermore,Comparing with the planar substrate, the average stress of the Ga As epitaxial layer in the growth window region of the patterned substrate is reduced by 90%. These findings are useful in the optimal designing of growing high-quality Ga As films on patterned Si substrates.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science,and Technology,Korea (Grant No.2010-0024703)
文摘The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k.p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy, defined as the energy difference between the ground electronic and the ground heavy-hole subbands, increases with the increasing QR inner diameter regardless of the temperature, while the interband energy decreases with the increasing QR height, This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model, in the framework of the finite element method and the theory of elasticity of solids, shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.