Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method ...Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
A new edge detection method combining the scanning window central edge (SWCE) detector and an improved active contour model is proposed. The method first emploies the SWCE detector based on the difference of area pi...A new edge detection method combining the scanning window central edge (SWCE) detector and an improved active contour model is proposed. The method first emploies the SWCE detector based on the difference of area pixel value means to perform an optimal edge detection, and then proposes an improved active contour model with modified energy functions to refine the location of the edges. The initial nodes of the improved active contour model are automatically found from the vectorised results of the SWCE detector. Tests on simulated speckled images and real airborne SAR images show that the combined method can benefit from the advantages of the both techniques and get satisfactory edge detection and localization abilities at the same time.展开更多
Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due ...Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.展开更多
The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based...The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.展开更多
To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform ...To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).展开更多
This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection alg...This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection algorithm where image pixels are defined as individuals of population.First,the computing model of MNGA is designed to perform mem-computing,which brings new possibility of the hardware implementation of GA.Secondly,MNGA-based edge detection integrating image filter and GA operator deployed by MN is proposed.Finally,simulation results demonstrate that the figure of merit(FoM)of our model is better than the latest memristor-based swarm intelligence.In summary,a new way is found to build proper matching of memristor to GA and aid image edge detection.展开更多
Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application t...Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application to edge detection.An MCM-CNN is designed by adopting a memristor crossbar composed of a pair of memristors.MCM-CNN based on the memristor crossbar with changeable weight is suitable for edge detection of a binary image and a color image considering its characteristics of programmablization and compactation.Figure of merit(FOM)is introduced to evaluate the proposed structure and several traditional edge detection operators for edge detection results.Experiment results show that the FOM of MCM-CNN is three times more than that of the traditional edge detection operators.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approa...A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.展开更多
The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information ...The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information within cover object and hence shields the data theft over rapidly growing network.Recently, diverse steganography techniques using edge identification have been proposed in literature.Numerous methods however utilize certain pixels in the cover image for inserting edge information,resulting in significant deformation. The conventional edge detection method limits the deployment of edge detection in steganography as concealing the information would introduce some variations to the cover image. Hence inserting data in pixel areas recognized by existing conventional edge detection techniques like canny cannot ensure the recognition of the exact edge locations for the cover and stego images. In this paper, an Adaptive steganography method based on novel fuzzy edge identification is proposed. The method proposed is proficient of estimating the precise edge areas of a cover image and also ensures the exact edge location after embedding the secret message. Experimental results reveal that the technique has attained good imperceptibility compared to the Hayat AI-Dmour and Ahmed AIAni Edge XOR method in spatial domain.展开更多
An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical...An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively.展开更多
文摘Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
文摘A new edge detection method combining the scanning window central edge (SWCE) detector and an improved active contour model is proposed. The method first emploies the SWCE detector based on the difference of area pixel value means to perform an optimal edge detection, and then proposes an improved active contour model with modified energy functions to refine the location of the edges. The initial nodes of the improved active contour model are automatically found from the vectorised results of the SWCE detector. Tests on simulated speckled images and real airborne SAR images show that the combined method can benefit from the advantages of the both techniques and get satisfactory edge detection and localization abilities at the same time.
基金supported by the National Natural Science Foundation of China(61210012)
文摘Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.
基金Project(61673400) supported by the National Natural Science Foundation of China Project(61590923) supported by the Major Program of the National Natural Science Foundation of China+2 种基金 Project(61621062) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China Project(61533020) supported by the State Key Program of National Natural Science of China Project(502221709) supported by the Fundamental Research Funds for the Central Universities, China
文摘The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.
基金supported by the National Natural Science Foundation of China(6067309760702062)+3 种基金the National HighTechnology Research and Development Program of China(863 Program)(2008AA01Z1252007AA12Z136)the National ResearchFoundation for the Doctoral Program of Higher Education of China(20060701007)the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT 0645).
文摘To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).
基金This work was supported by the National Natural Science Foundation of China(61550110248)the Sichuan Science and Technology Department project(2019YFG0190)the University of Electronic Science and Technology of China project(H04W170186).
文摘This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection algorithm where image pixels are defined as individuals of population.First,the computing model of MNGA is designed to perform mem-computing,which brings new possibility of the hardware implementation of GA.Secondly,MNGA-based edge detection integrating image filter and GA operator deployed by MN is proposed.Finally,simulation results demonstrate that the figure of merit(FoM)of our model is better than the latest memristor-based swarm intelligence.In summary,a new way is found to build proper matching of memristor to GA and aid image edge detection.
基金supported by the Research Fund for International Young Scientists of the National Natural Science Foundation of China(61550110248)the Research on Fundamental Theory of Shared Intelligent Street Lamp for New Scene Service(H04W200495)+1 种基金Sichuan Science and Technology Program(2019YFG0190)the Research on Sino-Tibetan Multi-source Information Acquisition,Fusion,Data Mining and its Application(H04W170186).
文摘Memristor with memory properties can be applied to connection points(synapses)between cells in a cellular neural network(CNN).This paper highlights memristor crossbar-based multilayer CNN(MCM-CNN)and its application to edge detection.An MCM-CNN is designed by adopting a memristor crossbar composed of a pair of memristors.MCM-CNN based on the memristor crossbar with changeable weight is suitable for edge detection of a binary image and a color image considering its characteristics of programmablization and compactation.Figure of merit(FOM)is introduced to evaluate the proposed structure and several traditional edge detection operators for edge detection results.Experiment results show that the FOM of MCM-CNN is three times more than that of the traditional edge detection operators.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
基金Project(90820302) supported by the National Natural Science Foundation of China
文摘A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.
文摘The evolution in communication techniques has created wide threats for crucial information transfer through a communication channel. Covert communication with steganography is a skill of concealing secret information within cover object and hence shields the data theft over rapidly growing network.Recently, diverse steganography techniques using edge identification have been proposed in literature.Numerous methods however utilize certain pixels in the cover image for inserting edge information,resulting in significant deformation. The conventional edge detection method limits the deployment of edge detection in steganography as concealing the information would introduce some variations to the cover image. Hence inserting data in pixel areas recognized by existing conventional edge detection techniques like canny cannot ensure the recognition of the exact edge locations for the cover and stego images. In this paper, an Adaptive steganography method based on novel fuzzy edge identification is proposed. The method proposed is proficient of estimating the precise edge areas of a cover image and also ensures the exact edge location after embedding the secret message. Experimental results reveal that the technique has attained good imperceptibility compared to the Hayat AI-Dmour and Ahmed AIAni Edge XOR method in spatial domain.
基金Sponsored by China Postdoctoral Science Foundation (20060400400)
文摘An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively.