期刊文献+
共找到877篇文章
< 1 2 44 >
每页显示 20 50 100
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
1
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine (LS- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
在线阅读 下载PDF
Improved scheme to accelerate sparse least squares support vector regression
2
作者 Yongping Zhao Jianguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期312-317,共6页
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p... The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem. 展开更多
关键词 least squares support vector regression machine pruning algorithm iterative methodology classification.
在线阅读 下载PDF
基于EWOA-LSSVR的机器人磨抛接触力预测模型
3
作者 张诗涵 魏锦辉 +3 位作者 王阳 朱光 李论 刘殿海 《金刚石与磨料磨具工程》 北大核心 2025年第4期551-560,共10页
为确定航空发动机叶片机器人磨抛过程中材料去除深度与工艺参数之间的关系,获得加工所需的工艺参数,实现叶片表面材料的定点定量去除,建立叶片机器人磨抛加工系统,将各工艺参数考虑在内进行多组正交实验;利用实验数据建立基于最小二乘... 为确定航空发动机叶片机器人磨抛过程中材料去除深度与工艺参数之间的关系,获得加工所需的工艺参数,实现叶片表面材料的定点定量去除,建立叶片机器人磨抛加工系统,将各工艺参数考虑在内进行多组正交实验;利用实验数据建立基于最小二乘支持向量回归机(least squares support vector regression,LSSVR)模型,利用增强型鲸鱼优化算法(enhanced whale optimization algorithm,EWOA)提高算法精度、寻优能力和避免陷入局部最优并对LSSVR的超参数进行优化;对比标准鲸鱼优化算法(whale optimization algorithm,WOA)和粒子群优化(particle swarm optimization,PSO)算法预测模型的结果,并利用模型预测的工艺参数进行实验验证。结果表明:EWOA-LSSVR预测模型的决定系数R为96.031%,平均绝对误差RMAE为0.012128 mm,相较于WOA-LSSVR和PSO-LSSVR模型具有更好的拟合度;且验证实验结果证明EWOA-LSSVR预测模型具有较好的预测准确性,并可为叶片表面材料的定点定量去除提供可靠依据。 展开更多
关键词 机器人砂带磨抛 工艺参数 机器学习 最小二乘支持向量回归机 增强型鲸鱼优化算法
在线阅读 下载PDF
基于DE-SVR的土压平衡盾构隧道施工阶段地表沉降预测研究 被引量:12
4
作者 白祥瑞 戎晓力 +1 位作者 文祝 张宁 《隧道建设(中英文)》 CSCD 北大核心 2021年第S02期336-345,共10页
为获取更加有效的地表沉降影响因素数据进行地表沉降的机器学习算法预测,基于差分进化算法优化支持向量回归机(DESVR)的机器学习方法,结合盾构法隧道施工阶段地表沉降的影响范围,以及该范围内地表沉降影响因素的多元时序数据特征,建立... 为获取更加有效的地表沉降影响因素数据进行地表沉降的机器学习算法预测,基于差分进化算法优化支持向量回归机(DESVR)的机器学习方法,结合盾构法隧道施工阶段地表沉降的影响范围,以及该范围内地表沉降影响因素的多元时序数据特征,建立盾构法隧道施工阶段的地表沉降预测方法。以常州轨道交通1号线工程为例,结果表明,与传统的机器学习预测研究方法进行对比,该地表沉降预测方法具有更高的预测精度及更稳定的预测效果。 展开更多
关键词 盾构法施工 地表沉降预测 影响范围 协方差矩阵 支持向量回归机
在线阅读 下载PDF
基于Google Earth Engine的前郭县春季农田覆膜提取
5
作者 邓韵谣 李晓洁 任建华 《地理科学》 CSSCI CSCD 北大核心 2024年第8期1417-1425,共9页
本文基于Google Earth Engine(GEE)云平台,综合考虑光学影像的波段反射率、光谱指数特征和雷达影像的极化、纹理特征,分别构建仅使用光学特征、仅使用雷达特征以及光学和雷达特征组合3种特征输入组合;根据精度确定最佳输入特征后,分别... 本文基于Google Earth Engine(GEE)云平台,综合考虑光学影像的波段反射率、光谱指数特征和雷达影像的极化、纹理特征,分别构建仅使用光学特征、仅使用雷达特征以及光学和雷达特征组合3种特征输入组合;根据精度确定最佳输入特征后,分别结合机器学习中的分类与回归树、支持向量机、最小距离分类法、梯度提升树和随机森林5种方法建立覆膜提取模型,依据结果精度评估不同方法的性能,并基于最优化模型提取出最终的覆膜农田面积。结果表明:①最佳输入特征为波段反射率特征+光谱指数特征+极化特征+纹理特征;②采用随机森林方法建立的模型精度最高,研究区I的总体精度达到了95.84%,Kappa系数为0.95,地物错分率为1.2%,明显优于其他4种方法(地物错分率较分类与回归树、支持向量机、最小距离和梯度提升树法降低0.8%、7.3%、38.0%和0.3%),研究区II的验证精度达到了87.84%,证明该模型在覆膜提取中可以取得更加准确的结果;③使用本文方法得到2022年研究区I覆膜农田面积为1302.48 km2,估算地膜使用量约为7585.62 t。本文综合考虑光学和雷达影像在地物识别中的特点建立模型,可以准确、高效的识别农田地膜,掌握地膜面积,对环境治理与防治具有重要意义。 展开更多
关键词 覆膜 Google earth engine 特征提取 随机森林 支持向量机 分类与回归树 最小距离 梯度提升树
在线阅读 下载PDF
深埋长大隧道地温预测的机器学习算法对比研究 被引量:1
6
作者 周权 罗锋 +1 位作者 柴波 周爱国 《安全与环境工程》 北大核心 2025年第1期137-147,共11页
地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机... 地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机器学习模型解译性差等问题,以A隧道为研究对象,将决策树(decision tree,DT)、支持向量机(support vector machine,SVM)、随机森林(random forest,RF)进行耦合,提出了基于DT-SVM-RF模型的深埋长大隧道地温预测方法。在分析隧道综合测井、地应力及岩石热物理试验、航空物探数据后,选取深度、声波波速等10个影响因子作为模型的输入,采用随机交叉验证和空间交叉验证对模型的鲁棒性、泛化能力进行检验,构建LASSO回归、随机森林、互信息3种回归模型,分析10个影响因子的特征重要性排序。结果表明:在测试集上多元线性回归、支持向量机、人工神经网络和决策树-支持向量机-随机森林(decision tree-support vector machinerandom forest,DT-SVM-RF)模型决定系数(R^(2))分别为0.76、0.91、0.88、0.93,均方误差MSE分别为17.64、6.25、8.46、5.20,DT-SVM-RF模型具有相对更优的预测性能,深度、岩石导温系数、岩石导热系数、最大水平主应力特征较为重要,说明DT-SVM-RF模型能有效地提高地温预测的准确率。研究结果可为类似隧道地温预测提供一种精度更高的可行新思路。 展开更多
关键词 隧道热害 隧道安全 多元线性回归 支持向量机(SVM) 随机森林(RF) 人工神经网络(ANN) 特征选择
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
7
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
花山谜窟—渐江风景名胜区乔木林森林蓄积量估测
8
作者 唐雪海 钱子悦 +5 位作者 王佩 黄庆丰 左纬杰 倪辰 孔令媛 许程 《安徽农业科学》 2025年第14期121-125,170,共6页
以花山谜窟—渐江风景名胜区作为研究对象,结合Landsat遥感影像和DEM数据,综合考虑光谱、纹理、地形特征,分别使用多元线性逐步回归(MLSR)、支持向量机(SVM)、随机森林(RF)构建乔木林遥感蓄积量估算模型,并选择最优模型反演研究区乔木... 以花山谜窟—渐江风景名胜区作为研究对象,结合Landsat遥感影像和DEM数据,综合考虑光谱、纹理、地形特征,分别使用多元线性逐步回归(MLSR)、支持向量机(SVM)、随机森林(RF)构建乔木林遥感蓄积量估算模型,并选择最优模型反演研究区乔木蓄积。结果表明:对比3种模型估测结果的精度评价指标R^(2)和RMSE,MLSR的R^(2)=0.46,RMSE=113.14 m^(3)/hm^(2);SVM的R^(2)=0.57,RMSE=98.36 m^(3)/hm^(2);FM的R^(2)=0.65,RMSE=91.01 m^(3)/hm^(2);最终以RF模型为最优模型反演研究区蓄积量,得出乔木总蓄积量688 516.275 m^(3),平均蓄积量245.467 m^(3)/hm^(2)。该研究结果可为风景名胜区森林生态服务功能价值评估提供数据支撑。 展开更多
关键词 森林蓄积量 遥感反演 随机森林 支持向量机 多元线性逐步回归
在线阅读 下载PDF
采用改进支持向量机的浅海水声信道小样本估计 被引量:2
9
作者 郑巧宁 郑浩赐 +2 位作者 李茂林 童峰 陈东升 《哈尔滨工程大学学报》 北大核心 2025年第3期390-400,共11页
针对快变浅海水声信道相干时间短,信道估计算法需要具备小样本学习能力这一要求,本文提出一种适用于浅海水声信道的基于改进支持向量机的浅海水声信道小样本估计算法。基于最大间隔原理推导出支持向量机回归信道估计模型,并针对时变信道... 针对快变浅海水声信道相干时间短,信道估计算法需要具备小样本学习能力这一要求,本文提出一种适用于浅海水声信道的基于改进支持向量机的浅海水声信道小样本估计算法。基于最大间隔原理推导出支持向量机回归信道估计模型,并针对时变信道,在支持向量机代价函数中引入时变因子改善估计器与时变信道的适配程度,对该算法在时变信道下的小样本估计性能表现进行了仿真和浅海信道实测验证。结果表明:本文算法在信道估计误差和误比特性能方面均优于传统估计器,在信道估计观测窗长较短的情况下尤其如此。本文提出的改进支持向量机估计算法在小样本场景下展现出优异性能,为快变浅海水声信道估计提供了有效解决方案,对提升水声通信性能具有重要意义。 展开更多
关键词 支持向量回归 改进支持向量机 稀疏性 小样本 时变信道 水声通信 信道估计 浅海水声环境
在线阅读 下载PDF
应用背包和无人机LiDAR数据对森林地上生物量估测 被引量:2
10
作者 李馨 岳彩荣 +4 位作者 罗洪斌 张澜钟 沈健 李佳 李初蕤 《东北林业大学学报》 CAS 北大核心 2025年第2期105-113,共9页
激光雷达(LiDAR)技术在林业调查中应用广泛,能够精确获取森林垂直结构信息。利用背包LiDAR结合实地调查样地,验证其替代实地调查的可行性;应用UAV-LiDAR数据,采用多元逐步回归(MSR)、支持向量机(SVM)和随机森林(RF)算法,建立地上生物量... 激光雷达(LiDAR)技术在林业调查中应用广泛,能够精确获取森林垂直结构信息。利用背包LiDAR结合实地调查样地,验证其替代实地调查的可行性;应用UAV-LiDAR数据,采用多元逐步回归(MSR)、支持向量机(SVM)和随机森林(RF)算法,建立地上生物量估测模型并进行对比分析。研究结果显示:(1)在人工干预下,应用背包LiDAR数据提取的单木参数与实测值高度相关,平均胸径的决定系数(R^(2))为0.98,均方根误差(R_(MSE))为0.35 cm;平均树高的R^(2)为0.96,R_(MSE)为0.63 m。(2)应用背包LiDAR构建的生物量样本,利用UAV-LiDAR建立的AGB估测模型中,随机森林模型表现最佳(R^(2)=0.75,R_(MSE)=23.58 t/hm^(2)),其次是支持向量机模型(R^(2)=0.63,R_(MSE)=30.49 t/hm^(2)),多元逐步回归模型表现最差(R^(2)=0.54,R_(MSE)=35.60 t/hm^(2))。因此,背包LiDAR获取的单木胸径及树高精度较高,可替代实测样地生物量,以扩大样本覆盖范围;应用背包LiDAR数据结合机载LiDAR,可实现较大尺度的森林生物量快速估测,为大范围森林生物量反演提供了一种可行方法。 展开更多
关键词 背包激光雷达 无人机激光雷达 森林地上生物量 多元逐步回归 支持向量机 随机森林
在线阅读 下载PDF
基于PCA-DBO-SVR的林地土壤有机质高光谱反演模型 被引量:2
11
作者 邓昀 王君 +1 位作者 陈守学 石媛媛 《光谱学与光谱分析》 北大核心 2025年第2期569-583,共15页
森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可... 森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可以非接触、高效率地检测出土壤的养分信息。针对现有机器学习土壤有机质预测模型的精度和计算效率方面的不足,以广西国有黄冕林场和国有雅长林场为土壤样品采集点,基于全光谱数据利用主成分分析算法(PCA)筛选特征波段的最佳波长数量,并利用比一阶微分处理数据更加精细且能平衡光谱噪声和光谱分辨率之间的关系的分数阶微分为预处理方法之一对光谱数据进行变换处理,最后采用相对于传统的中心化算法拥有较高鲁棒性和容错能力的蜣螂算法(DBO)对支持向量回归机(SVR)的高斯核函数的参数组合进行优化。研究结果表明,PCA-DBO-SVR模型可以有效提高土壤有机质预测的决定系数R^(2)并降低预测均方根误差(RMSE)。PCA-DBO-SVR在对比预测模型中表现出最佳的泛化性能和准确度,其验证集R^(2)为0.942,RMSE为2.989 g·kg^(-1),展现了较好的准确性。 展开更多
关键词 近红外光谱 分数阶微分 蜣螂优化算法 土壤养分预测 支持向量回归机
在线阅读 下载PDF
基于IBA-SVR的滚动轴承性能退化趋势预测 被引量:1
12
作者 黄亚州 邵萌 +3 位作者 吴昊 安冬 张浩龙 崔志强 《科学技术与工程》 北大核心 2025年第6期2428-2434,共7页
建立准确的滚动轴承性能退化预测模型对于轴承故障分类、寿命预测等后续处理有着至关重要的作用。为了解决轴承性能退化模型预测不准确的问题,提出了一种改进的蝙蝠算法(improvement bat algorithm,IBA)来提高退化模型预测的准确度。首... 建立准确的滚动轴承性能退化预测模型对于轴承故障分类、寿命预测等后续处理有着至关重要的作用。为了解决轴承性能退化模型预测不准确的问题,提出了一种改进的蝙蝠算法(improvement bat algorithm,IBA)来提高退化模型预测的准确度。首先将Cat混沌映射应用到种群初始位置,增强种群的遍历性,提高初始解的质量;其次在迭代过程中加入类反正切控制因子,提高算法寻优精度;最后改进位置更新策略,防止陷入局部最优。通过与蝙蝠算法(bat algorithm,BA)优化的支持向量回归机(support vector regression,SVR)、粒子群优化算法优化的SVR和灰狼优化算法优化的SVR所得的结果做对比,结果表明:IBA所优化预测模型的均值绝对误差分别下降了70.60%、67.19%、55.56%,均方根误差分别下降了76.64%、76.12%、30.29%,进一步证明了改进后的预测模型的准确性。 展开更多
关键词 蝙蝠算法 滚动轴承 退化趋势预测 支持向量回归机
在线阅读 下载PDF
一种改善EMD端点效应的新方法及其在谐波分析中的应用 被引量:19
13
作者 苏玉香 刘志刚 +1 位作者 李科亮 霍柏超 《电工电能新技术》 CSCD 北大核心 2008年第2期33-37,共5页
为了改善经验模态分解(EMD)过程中产生的端点效应,本文提出一种基于支持向量机和镜像延拓相结合的新方法对短时间序列进行延拓。首先应用支持向量机(SVM)对原始信号两端分别延拓一个极大值和一个极小值,再用带镜像延拓程序的EMD方法对... 为了改善经验模态分解(EMD)过程中产生的端点效应,本文提出一种基于支持向量机和镜像延拓相结合的新方法对短时间序列进行延拓。首先应用支持向量机(SVM)对原始信号两端分别延拓一个极大值和一个极小值,再用带镜像延拓程序的EMD方法对延拓后的信号进行边分解边延拓,逐渐抛弃受"污染"的点,得到具有原始信号长度的固有模态函数(IMF)。本文将该方法应用于电力系统的谐波分析中,仿真结果表明该方法能有效抑制EMD方法的端点效应,可以得到效果更好的单分量谐波信号。 展开更多
关键词 eMD 端点效应 支持向量回归机 镜像延拓 谐波分析
在线阅读 下载PDF
求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法 被引量:9
14
作者 周晓剑 马义中 +2 位作者 朱嘉钢 刘利平 汪建均 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1178-1184,共7页
序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的... 序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的前提下可使非半正定Huber-SVR能够达到比较理想的回归精度,因而具有一定的理论意义和实用价值. 展开更多
关键词 支持向量机 非半正定核 序列最小最优化算法 Huber-支持向量回归机
在线阅读 下载PDF
基于影像组学的术前直肠癌淋巴血管侵犯状态预测
15
作者 吉祥 张茜 +3 位作者 林予松 付芳芳 杨燕 王梅云 《计算机应用与软件》 北大核心 2025年第7期44-50,共7页
针对术前预测淋巴血管侵犯(LVI)方面的问题,基于影像组学方法构建分类模型来预测直肠癌患者LVI状态。以212例经病理检查确定为直肠癌的患者为研究对象,使用多种机器学习算法对PyRadiomics提取的影像特征进行筛选并使用支持向量机算法来... 针对术前预测淋巴血管侵犯(LVI)方面的问题,基于影像组学方法构建分类模型来预测直肠癌患者LVI状态。以212例经病理检查确定为直肠癌的患者为研究对象,使用多种机器学习算法对PyRadiomics提取的影像特征进行筛选并使用支持向量机算法来建立影像模型,使用赤池信息准则作为评价指标的逻辑斯特回归算法对临床特征进行筛选并使用逻辑斯特回归算法构建临床模型,整合筛选出的影像特征和临床特征使用逻辑斯特回归算法构建组合模型。结果表明:整合影像特征和临床特征的模型在训练集和测试集中预测能力均表现最佳(训练集AUC:0.954;测试集AUC:0.909),所提模型可用于术前预测直肠癌患者的LVI状态,并可作为指导后续个体化治疗的有效临床工具。 展开更多
关键词 直肠癌 淋巴血管侵犯 影像组学 逻辑斯特回归 支持向量机
在线阅读 下载PDF
基于EPO算法去除水分影响的土壤有机质高光谱估算 被引量:12
16
作者 洪永胜 于雷 +5 位作者 朱亚星 吴红霞 聂艳 周勇 QI Feng 夏天 《土壤学报》 CAS CSCD 北大核心 2017年第5期1068-1078,共11页
野外进行土壤有机质的光谱快速预测时需考虑土壤含水量的影响。在室内设计人工加湿实验分别获取9个土壤含水量梯度(0~32%,间隔4%)的土壤光谱数据,分析土壤含水量变化对光谱的影响,再利用外部参数正交化法(external parameter orthogonal... 野外进行土壤有机质的光谱快速预测时需考虑土壤含水量的影响。在室内设计人工加湿实验分别获取9个土壤含水量梯度(0~32%,间隔4%)的土壤光谱数据,分析土壤含水量变化对光谱的影响,再利用外部参数正交化法(external parameter orthogonalization,EPO)进行湿土光谱校正,并结合偏最小二乘回归和支持向量机回归分别建立土壤有机质预测模型。结果表明,土壤光谱反射率随着土壤含水量的增加呈非线性降低趋势,偏最小二乘回归模型的预测偏差比为1.16,模型不可用;经EPO算法校正后,各土壤含水量梯度之间的光谱差异性降低,能实现土壤有机质在不同土壤含水量梯度的有效估算,偏最小二乘回归和支持向量机回归模型的预测偏差比分别提高至1.76和2.15。研究结果可为田间快速预测土壤有机质提供必要参考。 展开更多
关键词 土壤光谱 有机质 含水量 外部参数正交化法 支持向量机回归 江汉平原
在线阅读 下载PDF
基于EMD与LS-SVM的刀具磨损识别方法 被引量:15
17
作者 关山 王龙山 聂鹏 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第2期144-148,共5页
针对刀具磨损声发射信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了基于经验模态分解和最小二乘支持向量机的刀具磨损状态识别方法.首先对声发射信号进行经验模态分解,将其分解为若干个固有模态函数之... 针对刀具磨损声发射信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了基于经验模态分解和最小二乘支持向量机的刀具磨损状态识别方法.首先对声发射信号进行经验模态分解,将其分解为若干个固有模态函数之和,然后分别对每一个固有模态函数进行自回归建模,最后提取每一个自回归模型的系数组成特征向量,特征向量被分为两组,一组用于对最小二乘支持向量机训练,另一组用于识别刀具磨损状态.试验结果表明:该方法能很好地识别刀具磨损状态,与BP神经网络相比具有更高的识别率. 展开更多
关键词 刀具磨损状态识别 最小二乘支持向量机 经验模态分解 自回归模型
在线阅读 下载PDF
SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法 被引量:21
18
作者 杨磊 吴秋兰 +3 位作者 张波 梁勇 洪学宝 邹文博 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第6期1134-1141,共8页
提出了一种支持向量回归机(SVRM)辅助的北斗地球静止轨道(GEO)卫星反射信号土壤湿度反演方法。使用全球导航卫星系统反射信号(GNSS-R)右旋圆极化(RHCP)天线和左旋圆极化(LHCP)天线接收体制进行了地基实验,采集了北斗GEO卫星直射、反射... 提出了一种支持向量回归机(SVRM)辅助的北斗地球静止轨道(GEO)卫星反射信号土壤湿度反演方法。使用全球导航卫星系统反射信号(GNSS-R)右旋圆极化(RHCP)天线和左旋圆极化(LHCP)天线接收体制进行了地基实验,采集了北斗GEO卫星直射、反射信号原始数据,并从中提取直射、反射信号的相关功率,结合北斗GEO卫星的高度角与方位角信息作为输入,烘干称重法获取的土壤湿度作为输出对使用径向基(RBF)核函数的ε-SVRM进行了训练。独立测试集上的结果表明,SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法获取的土壤湿度结果与烘干称重法获取的土壤湿度参考值误差控制在3%以内,线性回归方程决定系数为0.8979,均方根误差RMSE为1.4926%,证明了该方法具有良好的泛化特性,实际应用中效果良好。 展开更多
关键词 北斗 地球静止轨道(GeO)卫星 全球导航卫星系统反射信号(GNSS-R) 支持向量回归机(SVRM) 土壤湿度 遥感探测
在线阅读 下载PDF
基于切削力的机床主轴轴向热误差建模新方法
19
作者 汤滨瑞 王四宝 +2 位作者 王浩 黄强 赵增亚 《计算机集成制造系统》 北大核心 2025年第2期544-553,共10页
为解决现有热误差建模方法依靠经验选择温度测量点,导致模型稳健性差等问题,提出一种基于切削力的机床主轴轴向热误差建模新方法。研究数控机床主轴轴向热误差对未变形切屑形貌的影响机制,建立考虑机床主轴轴向热误差的切削力模型,揭示... 为解决现有热误差建模方法依靠经验选择温度测量点,导致模型稳健性差等问题,提出一种基于切削力的机床主轴轴向热误差建模新方法。研究数控机床主轴轴向热误差对未变形切屑形貌的影响机制,建立考虑机床主轴轴向热误差的切削力模型,揭示相同切削工艺参数下的热误差致切削力演变规律;分析机床主轴轴向热误差与切削力的关联关系,利用支持向量回归建立基于切削力的机床主轴轴向热误差模型。与传统热误差模型相比,基于切削力的热误差建模方法不需要大量的温度传感器和复杂的温度敏感点确定过程,而且不用考虑温度敏感点动态变化对模型稳健性的影响。通过不同环境和工况下的实验证明,模型预测精度达到90%以上,具有较强的预测能力与泛化能力,为机床轴向热误差在线辨识提供了新方法,同时为机床在线误差补偿以及在智能制造过程中提升零件质量提供了技术基础。 展开更多
关键词 热误差建模 切削力 支持向量回归 数控机床
在线阅读 下载PDF
不同模型在渔业CPUE标准化中的比较分析 被引量:13
20
作者 杨胜龙 张禹 +1 位作者 张衡 樊伟 《农业工程学报》 EI CAS CSCD 北大核心 2015年第21期259-264,共6页
为了提高渔业数据单位捕捞努力量渔获量(catch per unite of effort,CPUE)标准化数据的质量和模型连续稳定预测能力,该文采用人工神经网络(artificial neural network,ANN)、回归树(regression trees,RT)、随机森林(random forest,RF)... 为了提高渔业数据单位捕捞努力量渔获量(catch per unite of effort,CPUE)标准化数据的质量和模型连续稳定预测能力,该文采用人工神经网络(artificial neural network,ANN)、回归树(regression trees,RT)、随机森林(random forest,RF)和支持向量机(support vector machine,SVM)等机器学习方法和传统的广义线性模型(generalized linear model,GLM)等方法,对2000-2013年大西洋大眼金枪鱼(Thunnus obesus)延绳钓CPUE数据进行标准化。采用平均绝对误差、平均均方误差、3种相关系数(Pearson’s,Kendall’s和Spearman’s)和标准化均方误差等评价指标对不同模型标准化结果进行对比,寻找较优的标准化方法。研究结果表明,在验证数据集SVM方法得到的3种相关系数(0.596,0473和0.632)和RF(0.623,0.456,0.621)相似,高于RT(0.516,0.432和0.586)、ANN(0.428,0.249和0.365)和GLM(0.199,0.106和0.159)。SVM预测的均方误差(11.25)、平均绝对误差(2.107)和标准化均方误差(0.652)略低于RF(11.655,2.377和0.661),明显低于RT(14.999,2.434和0.801)、ANN(16.692,2.883和0.823)和GLM(16.517,2.777和0.993)。各项指标揭示SVM方法要优于其他4种方法,RF次之,GLM计算结果在所有方法中最差,不适合渔业数据CPUE标准化。SVM和RF方法应该被优先考虑用于渔业数据CPUE标准化。研究结果为渔业资源管理和保护提供更好的支持。 展开更多
关键词 模型 标准化 支持向量机 随机森林 回归树 人工神经网络 广义线性回归
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部