期刊文献+
共找到1,489篇文章
< 1 2 75 >
每页显示 20 50 100
Machine learning molecular dynamics simulations of liquid methanol
1
作者 Jie Qian Junfan Xia Bin Jiang 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期12-21,I0009,I0010,共12页
As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular... As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems. 展开更多
关键词 liquid methanol molecular dynamics machine learning hydrogen bond force field
在线阅读 下载PDF
Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates 被引量:2
2
作者 Xu Long Ming-hui Mao +2 位作者 Tian-xiong Su Yu-tai Su Meng-ke Tian 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期100-111,共12页
Machine learning(ML)methods with good applicability to complex and highly nonlinear sequences have been attracting much attention in recent years for predictions of complicated mechanical properties of various materia... Machine learning(ML)methods with good applicability to complex and highly nonlinear sequences have been attracting much attention in recent years for predictions of complicated mechanical properties of various materials.As one of the widely known ML methods,back-propagation(BP)neural networks with and without optimization by genetic algorithm(GA)are also established for comparisons of time cost and prediction error.With the aim to further increase the prediction accuracy and efficiency,this paper proposes a long short-term memory(LSTM)networks model to predict the dynamic compressive performance of concrete-like materials at high strain rates.Dynamic explicit analysis is performed in the finite element(FE)software ABAQUS to simulate various waveforms in the split Hopkinson pressure bar(SHPB)experiments by applying different stress waves in the incident bar.The FE simulation accuracy is validated against SHPB experimental results from the viewpoint of dynamic increase factor.In order to cover more extensive loading scenarios,60 sets of FE simulations are conducted in this paper to generate three kinds of waveforms in the incident and transmission bars of SHPB experiments.By training the proposed three networks,the nonlinear mapping relations can be reasonably established between incident,reflect,and transmission waves.Statistical measures are used to quantify the network prediction accuracy,confirming that the predicted stress-strain curves of concrete-like materials at high strain rates by the proposed networks agree sufficiently with those by FE simulations.It is found that compared with BP network,the GA-BP network can effectively stabilize the network structure,indicating that the GA optimization improves the prediction accuracy of the SHPB dynamic responses by performing the crossover and mutation operations of weights and thresholds in the original BP network.By eliminating the long-time dependencies,the proposed LSTM network achieves better results than the BP and GA-BP networks,since smaller mean square error(MSE)and higher correlation coefficient are achieved.More importantly,the proposed LSTM algorithm,after the training process with a limited number of FE simulations,could replace the time-consuming and laborious FE pre-and post-processing and modelling. 展开更多
关键词 Deep learning LSTM network GA-BP network dynamic behaviour Concrete-like materials
在线阅读 下载PDF
A combined finite element and deep learning network for structural dynamic response estimation on concrete gravity dam subjected to blast loads 被引量:2
3
作者 Xin Fang Heng Li +3 位作者 She-rong Zhang Xiao-hua Wang Chao Wang Xiao-chun Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期298-313,共16页
Social infrastructures such as dams are likely to be exposed to high risk of terrorist and military attacks,leading to increasing attentions on their vulnerability and catastrophic consequences under such events.This ... Social infrastructures such as dams are likely to be exposed to high risk of terrorist and military attacks,leading to increasing attentions on their vulnerability and catastrophic consequences under such events.This paper tries to develop advanced deep learning approaches for structural dynamic response prediction and dam health diagnosis.At first,the improved long short-term memory(LSTM)networks are proposed for data-driven structural dynamic response analysis with the data generated by a single degree of freedom(SDOF)and the finite numerical simulation,due to the unavailability of abundant practical structural response data of concrete gravity dam under blast events.Three kinds of LSTM-based models are discussed with the various cases of noise-contaminated signals,and the results prove that LSTM-based models have the potential for quick structural response estimation under blast loads.Furthermore,the damage indicators(i.e.,peak vibration velocity and domain frequency)are extracted from the predicted velocity histories,and their relationship with the dam damage status from the numerical simulation is established.This study provides a deep-learning based structural health monitoring(SHM)framework for quick assessment of dam experienced underwater explosions through blastinduced monitoring data. 展开更多
关键词 Deep learning Structural health monitoring dynamic response Concrete gravity dam
在线阅读 下载PDF
Approximate Dynamic Programming for Self-Learning Control 被引量:14
4
作者 DerongLiu 《自动化学报》 EI CSCD 北大核心 2005年第1期13-18,共6页
This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynami... This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynamical systems. Due to its high computational complexity, the applications of dynamic programming have been limited to simple and small problems. The key step in finding approximate solutions to dynamic programming is to estimate the performance index in dynamic programming. The optimal control signal can then be determined by minimizing (or maximizing) the performance index. Artificial neural networks are very efficient tools in representing the performance index in dynamic programming. This paper assumes the use of neural networks for estimating the performance index in dynamic programming and for generating optimal control signals, thus to achieve optimal control through self-learning. 展开更多
关键词 近似动态程序 自学习控制 神经网络 人工智能
在线阅读 下载PDF
Dynamic self-adaptive ANP algorithm and its application to electric field simulation of aluminum reduction cell 被引量:1
5
作者 王雅琳 陈冬冬 +2 位作者 陈晓方 蔡国民 阳春华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4731-4739,共9页
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ... Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance. 展开更多
关键词 finite element parallel computing(FEPC) region partition(RP) dynamic self-adaptive ANP(DSA-ANP) algorithm electric field simulation aluminum reduction cell(ARC)
在线阅读 下载PDF
Co op erative Iterative Learning Control of Linear Multi-agent Systems with a Dynamic Leader under Directed Top ologies 被引量:1
6
作者 PENG Zhou-Hua WANG Dan WANG Hao WANG Wei 《自动化学报》 EI CSCD 北大核心 2014年第11期2595-2601,共7页
关键词 迭代学习控制器 LYAPUNOV-KRASOVSKII泛函 多智能体系统 领袖 线性 多代理系统 输出信息 未知输入
在线阅读 下载PDF
改进Q-Learning的路径规划算法研究 被引量:7
7
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 Q-learning算法 平滑处理 动态避障
在线阅读 下载PDF
Enhancing reliability assessment of curved low-stiffness track-viaducts with an adaptive surrogate-based approach emphasizing track dynamic geometric state
8
作者 CHENG Fang LIU Hui YANG Rui 《Journal of Central South University》 CSCD 2024年第11期4262-4275,共14页
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si... Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance. 展开更多
关键词 reliability assessment track dynamic geometric state hybrid machine learning algorithm adaptive learning strategy probability density evolution method
在线阅读 下载PDF
一种基于Q-Learning策略的自适应移动物联网路由新算法 被引量:20
9
作者 张德干 葛辉 +2 位作者 刘晓欢 张晓丹 李文斌 《电子学报》 EI CAS CSCD 北大核心 2018年第10期2325-2332,共8页
针对移动物(车)联网的路由问题,通过对车辆的运动特点及造成链路断裂的原因进行的详细分析,我们建立了链路维持时间模型,并将维持时间作为设计路由算法的重要参数. Q-Learning作为一种启发式机器学习策略,能够通过与周围环境交互来动态... 针对移动物(车)联网的路由问题,通过对车辆的运动特点及造成链路断裂的原因进行的详细分析,我们建立了链路维持时间模型,并将维持时间作为设计路由算法的重要参数. Q-Learning作为一种启发式机器学习策略,能够通过与周围环境交互来动态地调整路由路径.基于此,我们设计了一种自适应的路由新算法.它将学习任务分散在每一个车辆节点中,通过周期性的与周围节点交换信标信息来维护可靠的路由路径.利用NS-2模拟器对该算法的性能进行了评估,结果表明,在不同的网络场景中,该算法在递交率、端到端的延时以及平均跳数等方面均表现出很好的效果. 展开更多
关键词 机器学习 移动物联网 拓扑 动态 路由
在线阅读 下载PDF
无人机自组网中基于Q-learning算法的及时稳定路由策略 被引量:8
10
作者 姚玉坤 张本俊 周杨 《计算机应用研究》 CSCD 北大核心 2022年第2期531-536,共6页
无人机自组网凭借其抗干扰能力强、适用于复杂地形、智能化程度高和成本较低的优点,近年来受到广泛关注,该网络中路由协议的设计与优化一直是核心研究问题。针对无人机自组网中因节点快速移动造成节点本地存储的路由未及时更新而失效的... 无人机自组网凭借其抗干扰能力强、适用于复杂地形、智能化程度高和成本较低的优点,近年来受到广泛关注,该网络中路由协议的设计与优化一直是核心研究问题。针对无人机自组网中因节点快速移动造成节点本地存储的路由未及时更新而失效的问题,提出一种基于Q-learning算法的动态感知优化链路状态路由协议(DSQ-OLSR)。该协议首先充分考虑了无人机自组网节点高速移动的特点,在选取多点中继(MPR)节点时添加了链路稳定性和链路存在时间这两个指标,使得选出的MPR节点集更稳定、合理;其次,结合Q-learning算法对TC消息的发送间隔进行自适应调整,使得在网络拓扑变动较小时增大TC发送间隔以减小控制开销,而在拓扑变动较大时减小TC发送间隔用于达到快速感知并构建网络拓扑的要求,进而实现数据的及时路由。仿真结果表明,与DT-OLSR协议相比,该协议在端到端时延、吞吐量、成功率和网络生存时间性能上分别提高了12.61%、9.28%、7.69%和5.86%,由此验证了其有效性。 展开更多
关键词 无人机自组网 OLSR Q-learning TC消息 动态感知
在线阅读 下载PDF
港口集装箱装卸作业的Q-learning动态定价策略研究 被引量:3
11
作者 余珏 丁一 林国龙 《计算机应用与软件》 北大核心 2018年第12期123-130,221,共9页
港口企业在复杂的竞争环境中,需要应对不同船公司的需求制定合理的动态定价策略。使用滑动窗口方法,根据船公司减少作业时间的要求,计算出单船装卸作业时间的预期估计误差。运用TDABC(time-driven activity-based costing)方法分析码头... 港口企业在复杂的竞争环境中,需要应对不同船公司的需求制定合理的动态定价策略。使用滑动窗口方法,根据船公司减少作业时间的要求,计算出单船装卸作业时间的预期估计误差。运用TDABC(time-driven activity-based costing)方法分析码头作业成本,得出单船装卸作业的总成本。采用Q-learning算法得出以最大化单船装卸利润为主要目标,不同箱型下的动态定价策略。基于上海港实际数据分析表明:折扣因子从0. 1增加至0. 7时单船装卸利润增加至352. 77万元,从0. 7至0. 9时降至159. 89万元。相同学习率下,当单船装卸作业时间从10. 5小时减少至9小时,单船装卸利润波动明显。算例分析表明,该动态定价策略有助于港口企业的经济发展,能有效提高其竞争力。 展开更多
关键词 港口 单船装卸作业时间 动态定价 Q-learning TDABC
在线阅读 下载PDF
一种利用优先经验回放深度Q-Learning的频谱接入算法 被引量:7
12
作者 盘小娜 陈哲 +1 位作者 李金泽 覃团发 《电讯技术》 北大核心 2020年第5期489-495,共7页
针对认知无线传感器网络中频谱接入算法的频谱利用率不高、重要经验利用率不足、收敛速度慢等问题,提出了一种采用优先经验回放双深度Q-Learning的动态频谱接入算法。该算法的次用户对经验库进行抽样时,采用基于优先级抽样的方式,以打... 针对认知无线传感器网络中频谱接入算法的频谱利用率不高、重要经验利用率不足、收敛速度慢等问题,提出了一种采用优先经验回放双深度Q-Learning的动态频谱接入算法。该算法的次用户对经验库进行抽样时,采用基于优先级抽样的方式,以打破样本相关性并充分利用重要的经验样本,并采用一种非排序批量删除方式删除经验库的无用经验样本,以降低能量开销。仿真结果表明,该算法与采用双深度Q-Learning的频谱接入算法相比提高了收敛速度;与传统随机频谱接入算法相比,其阻塞概率降低了6%~10%,吞吐量提高了18%~20%,提高了系统的性能。 展开更多
关键词 认知无线传感器网络 动态频谱接入 强化学习 深度Q-learning
在线阅读 下载PDF
Chemical process dynamic optimization based on hybrid differential evolution algorithm integrated with Alopex 被引量:5
13
作者 范勤勤 吕照民 +1 位作者 颜学峰 郭美锦 《Journal of Central South University》 SCIE EI CAS 2013年第4期950-959,共10页
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua... To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained. 展开更多
关键词 evolutionary computation dynamic optimization differential evolution algorithm Alopex algorithm self-adaptivity
在线阅读 下载PDF
基于改进Q-learning算法和DWA的路径规划 被引量:6
14
作者 王志伟 邹艳丽 +2 位作者 刘唐慧美 侯凤萍 余自淳 《传感器与微系统》 CSCD 北大核心 2023年第9期148-152,共5页
针对传统Q-learning算法出现的规划路线转折点多,探索效率低,以及无法实现动态环境下的路径规划问题,提出一种基于改进Q-learning算法和动态窗口法(DWA)的融合算法。首先,改变传统Q-learning算法的搜索方式,由原先的8方向变成16方向;利... 针对传统Q-learning算法出现的规划路线转折点多,探索效率低,以及无法实现动态环境下的路径规划问题,提出一种基于改进Q-learning算法和动态窗口法(DWA)的融合算法。首先,改变传统Q-learning算法的搜索方式,由原先的8方向变成16方向;利用模拟退火算法对Q-learning进行迭代优化;通过路径节点优化算法进行节点简化,提高路径平滑度。然后,提取改进Q-learning算法规划路径的节点,将其作为DWA算法的临时目标,前进过程中,能够实时躲避环境中出现的动静态障碍物。最终实验结果表明:融合算法具有较好的路径规划能力,实现了全局最优和有效避障的效果。 展开更多
关键词 Q-learning算法 路径规划 动态窗口法
在线阅读 下载PDF
Cooperative maneuver decision making for multi-UAV air combat based on incomplete information dynamic game 被引量:7
15
作者 Zhi Ren Dong Zhang +2 位作者 Shuo Tang Wei Xiong Shu-heng Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期308-317,共10页
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info... Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics. 展开更多
关键词 Cooperative maneuver decision Air combat Incomplete information dynamic game Perfect bayes-nash equilibrium Reinforcement learning
在线阅读 下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:4
16
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic Bayesian network(DDBN) parameter learning missing data filling Bayesian estimation
在线阅读 下载PDF
Harmony search algorithm with differential evolution based control parameter co-evolution and its application in chemical process dynamic optimization 被引量:1
17
作者 范勤勤 王循华 颜学峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2227-2237,共11页
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat... A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application. 展开更多
关键词 harmony search differential evolution optimization CO-EVOLUTION self-adaptive control parameter dynamic optimization
在线阅读 下载PDF
Radar emitter signal recognition method based on improved collaborative semi-supervised learning 被引量:2
18
作者 JIN Tao ZHANG Xindong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1182-1190,共9页
Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition... Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition. 展开更多
关键词 emitter signal identification time series BOOTSTRAP semi supervised learning cross entropy function homogeniza-tion dynamic time warping(DTW)
在线阅读 下载PDF
基于Q-learning的高速铁路列车动态调度方法 被引量:15
19
作者 韩忻辰 俞胜平 +1 位作者 袁志明 程丽娟 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第10期1511-1521,共11页
高速铁路作为国家综合交通运输体系的骨干核心,近十年来取得了飞速蓬勃的发展.其飞速发展的同时也引发了路网复杂化、分布区域广等现象,这些现象对高铁动态调度提出了更高的要求.突发事件的不确定性会对列车造成时间延误影响,甚者时间... 高速铁路作为国家综合交通运输体系的骨干核心,近十年来取得了飞速蓬勃的发展.其飞速发展的同时也引发了路网复杂化、分布区域广等现象,这些现象对高铁动态调度提出了更高的要求.突发事件的不确定性会对列车造成时间延误影响,甚者时间延误会沿路网传播,造成大面积列车到发晚点.而目前对于此问题的人工调度方式,前瞻性及针对性较差,难以对受影响列车进行迅速调整.针对上述问题,本文建立了以各列车在各车站延误时间总和最小为目标函数的高速铁路列车动态调度模型,在此基础上设计了用于与智能体交互的仿真环境,采用了强化学习中的Q-learning算法对模型进行求解.最后通过仿真实例验证了仿真环境的合理性以及Q-learning算法用于高铁动态调度的有效性,为高铁调度员做出优化决策提供了良好的依据. 展开更多
关键词 高速铁路列车 动态调度 强化学习 Q-learning
在线阅读 下载PDF
基于Q-Learning算法的无人机空战机动决策研究 被引量:3
20
作者 姚培源 魏潇龙 +1 位作者 俞利新 李胜厚 《电光与控制》 CSCD 北大核心 2023年第5期16-22,共7页
针对无人机空战对抗自主机动决策问题,设计了侧向机动决策算法。通过加入启发式因子的方式和双Q表交替学习的机制,弥补了传统Q-Learning算法学习速度慢、无效学习多的不足。通过路径规划仿真和数据的对比,验证了改进Q-Learning算法具有... 针对无人机空战对抗自主机动决策问题,设计了侧向机动决策算法。通过加入启发式因子的方式和双Q表交替学习的机制,弥补了传统Q-Learning算法学习速度慢、无效学习多的不足。通过路径规划仿真和数据的对比,验证了改进Q-Learning算法具有更好的稳定性和求解能力。设计了动态的栅格规划环境,能够使无人机根据变化的空战态势自适应调整栅格尺寸大小,且对求解的速率不产生影响。基于Q-Learning算法,构建了无人机空战对抗侧向机动决策模型,并通过武器平台调换的方式验证了改进Q-Learning算法能显著提升无人机空战胜负比。 展开更多
关键词 无人机 空战 机动决策 动态栅格环境 路径规划 双Q-learning学习表算法
在线阅读 下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部