In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor...In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.展开更多
0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. The...0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.展开更多
基金supported by the National Natural Science Foundation of China (6087309960775013)
文摘In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.
基金This project was supported by the National Natural Science Foundation of China (79970042).
文摘0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.