Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the st...Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.展开更多
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
Cognitive bias,stemming from electronic measurement error and variability in human perception,exists in cognitive electronic warfare and affects the outcomes of conflicts.In this paper,the dynamic game approach is emp...Cognitive bias,stemming from electronic measurement error and variability in human perception,exists in cognitive electronic warfare and affects the outcomes of conflicts.In this paper,the dynamic game approach is employed to develop a model for cognitive bias induced by incomplete information and measurement errors in cognitive radar countermeasures.The payoffs for both parties are calculated using the radar's anti-jamming strategy matrix A and the jammer's jamming strategy matrix B.With perfect Bayesian equilibrium,a dynamic radar countermeasure model is established,and the impact of cognitive bias is analyzed.Drawing inspiration from the cognitive bias analysis method used in stock market trading,a cognitive bias model for cognitive radar countermeasures is introduced,and its correctness is mathematically proved.A gaming scenario involving the AN/SPY-1 radar and a smart jammer is set up to analyze the influence of cognitive bias on game outcomes.Simulation results validate the effectiveness of the proposed method.展开更多
The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if so...The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if solvable)can be solved numerically by using the terminal value and the backward iteration.To investigate the solvability and solution of these equations the formation control problem as the differential game is replaced by a discrete-time dynamic game.The main contributions of this paper are as follows.First,the existence of Nash equilibrium controls for the discretetime formation control problem is shown.Second,a backward iteration approximate solution to the coupled Riccati differential equations in the continuous-time differential game is developed.An illustrative example is given to justify the models and solution.展开更多
The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms prov...The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.展开更多
传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概...传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。展开更多
基金Project(2013-KY-2) supported by the State Key Laboratory of Hydroscience and Engineering of Hydroscience, ChinaProject(50925931)supported by the National Funds for Distinguished Young Scientists, China
文摘Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
文摘Cognitive bias,stemming from electronic measurement error and variability in human perception,exists in cognitive electronic warfare and affects the outcomes of conflicts.In this paper,the dynamic game approach is employed to develop a model for cognitive bias induced by incomplete information and measurement errors in cognitive radar countermeasures.The payoffs for both parties are calculated using the radar's anti-jamming strategy matrix A and the jammer's jamming strategy matrix B.With perfect Bayesian equilibrium,a dynamic radar countermeasure model is established,and the impact of cognitive bias is analyzed.Drawing inspiration from the cognitive bias analysis method used in stock market trading,a cognitive bias model for cognitive radar countermeasures is introduced,and its correctness is mathematically proved.A gaming scenario involving the AN/SPY-1 radar and a smart jammer is set up to analyze the influence of cognitive bias on game outcomes.Simulation results validate the effectiveness of the proposed method.
文摘The solvability of the coupled Riccati differential equations appearing in the differential game approach to the formation control problem is vital to the finite horizon Nash equilibrium solution.These equations(if solvable)can be solved numerically by using the terminal value and the backward iteration.To investigate the solvability and solution of these equations the formation control problem as the differential game is replaced by a discrete-time dynamic game.The main contributions of this paper are as follows.First,the existence of Nash equilibrium controls for the discretetime formation control problem is shown.Second,a backward iteration approximate solution to the coupled Riccati differential equations in the continuous-time differential game is developed.An illustrative example is given to justify the models and solution.
基金Projects(71601015,71501013,71471014)supported by the National Natural Science Foundation of ChinaProject(2015JBM060)supported by the Fundamental Research Funds for the Central Universities,China
文摘The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.
文摘传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。