Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in...Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.展开更多
A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and metho...A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects.展开更多
Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soar...Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conver...Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.展开更多
Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by ...Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.展开更多
The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-...The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-level optimization model, a new objective function was advised, integrating all the subsystem-levels' objective functions, so as to eliminate the effects of dimensions and magnitude order. The proposed CO architecture enabled multi-objectives of the system and subsystem-level to be considered at both levels during optimization. A bi-level optimization strategy was advised, using the multi-island genetic algorithm. The proposed model was demonstrated with a deck optimization problem of container ship stern. The analysis progress and results of example show that the CO strategy is not only feasible and reliable, but also well suited for use in actual optimization problems of ship design.展开更多
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o...In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.展开更多
Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Bas...Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Based on the parameterization modeling technique of MSC. ADAMS platform, the different steps in current mode are reorganized, thus obtaining an upgraded mode called the "parameterized-prototype-based cam profile dynamic optimization mode". A parameterized prototype(PP) of valve mechanism is constructed in the course of dynamic optimization for cam profiles. Practically, by utilizing PP and considering the flexibility of the parts in valve mechanism, geometric accuracy and design automatization are improved.展开更多
The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selec...The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.展开更多
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co...Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.展开更多
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ...For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.展开更多
The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimizati...The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs.展开更多
Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s...Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.展开更多
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA stra...Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.展开更多
The constitution,structure,working principle and launching process of the wedge-shaped pneumatic launcher of an unmanned aerial vehicle(UAV)are described.By simplifying its physical model,two dynamic models of the UAV...The constitution,structure,working principle and launching process of the wedge-shaped pneumatic launcher of an unmanned aerial vehicle(UAV)are described.By simplifying its physical model,two dynamic models of the UAV launch system are established based on Lagrange equation and MSC.ADAMS,respectively.The curves of the acceleration and the velocity of UAV changing with time are obtained.The simulation results are compared with the experimental results to verify the correctness of the model.Then,the influence of the parameters on the launch is explored.Finally,the system is optimized.The maximum overload and the acceleration fluctuation are reduced.展开更多
A multi-objective optimization of oil well drilling has been carried out using a binary coded elitist non-dominated sorting genetic algorithm.A Louisiana offshore field with abnormal formation pressure is considered f...A multi-objective optimization of oil well drilling has been carried out using a binary coded elitist non-dominated sorting genetic algorithm.A Louisiana offshore field with abnormal formation pressure is considered for optimization.Several multi-objective optimization problems involving twoand three-objective functions were formulated and solved to fix optimal drilling variables.The important objectives are:(i) maximizing drilling depth,(ii) minimizing drilling time and (iii) minimizing drilling cost with fractional drill bit tooth wear as a constraint.Important time dependent decision variables are:(i) equivalent circulation mud density,(ii) drill bit rotation,(iii) weight on bit and (iv) Reynolds number function of circulating mud through drill bit nozzles.A set of non-dominated optimal Pareto frontier is obtained for the two-objective optimization problem whereas a non-dominated optimal Pareto surface is obtained for the three-objective optimization problem.Depending on the trade-offs involved,decision makers may select any point from the optimal Pareto frontier or optimal Pareto surface and hence corresponding values of the decision variables that may be selected for optimal drilling operation.For minimizing drilling time and drilling cost,the optimum values of the decision variables are needed to be kept at the higher values whereas the optimum values of decision variables are at the lower values for the maximization of drilling depth.展开更多
Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms hav...Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.展开更多
A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equa...A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equations of the whole robot and its subsystem were derived and the robot's dynamic models were established.After that,an example simulation was performed by using Matlab software and the structural optimization of the robot's key parts were discussed and analyzed in ANSYS platform.The results show that the dynamic models are correct and can be helpful for the design,validation and kinetic control based on dynamics of this kind of palletizing robots.展开更多
基金supported by the National Key Research and Development Program Project(No.2021YFB3301300).
文摘Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.
基金supported by the National Natural Science Foundation of China(Grant No:52271300,52071337)National Key Research and Development Program of China(2022YFC2806501)+1 种基金High-tech Ship Research Projects Sponsored by MIIT(CBG2N21-4-25)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58).
文摘A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects.
基金support received by the National Natural Science Foundation of China(Grant Nos.52372398&62003272).
文摘Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金Project supported by the Natural Science Foundation of WIUCAS (Grant Nos.WIUCASQD2023004 and WIUCASQD2022025)the National Natural Science Foundation of China (Grant Nos.12304006,12104452,12022508,12074394,and 12374061)+1 种基金the Shanghai Science and Technology Innovation Action Plan (Grant No.23JC1401400)the Natural Science Foundation of Wenzhou (Grant No.L2023005)。
文摘Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.
基金Supported by the National Key Basic Research Program of China("973"Project)(2009CB724401)the China Postdoctoral Science Foundation(20070420208)the Postdoctoral Innovation Foundation of Shandong Province(200702023)~~
文摘Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.
基金Knowledge-based Ship-design Hyper-integrated Platform(KSHIP) of Ministry of Education and Ministry of Finance,P. R. China(No.200512)
文摘The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-level optimization model, a new objective function was advised, integrating all the subsystem-levels' objective functions, so as to eliminate the effects of dimensions and magnitude order. The proposed CO architecture enabled multi-objectives of the system and subsystem-level to be considered at both levels during optimization. A bi-level optimization strategy was advised, using the multi-island genetic algorithm. The proposed model was demonstrated with a deck optimization problem of container ship stern. The analysis progress and results of example show that the CO strategy is not only feasible and reliable, but also well suited for use in actual optimization problems of ship design.
文摘In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.
文摘Aiming at the problems in current cam profile optimization processes, such as simple dynamics models, limited geometric accuracy and low design automatization level, a new dynamic optimization mode is put forward. Based on the parameterization modeling technique of MSC. ADAMS platform, the different steps in current mode are reorganized, thus obtaining an upgraded mode called the "parameterized-prototype-based cam profile dynamic optimization mode". A parameterized prototype(PP) of valve mechanism is constructed in the course of dynamic optimization for cam profiles. Practically, by utilizing PP and considering the flexibility of the parts in valve mechanism, geometric accuracy and design automatization are improved.
文摘The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.
文摘Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.
基金the National Natural Science Foundation of China(project code:52202470)Jilin Province Natural Science Foundation(project codes:20220101205JC,20220101212JC)+2 种基金Jilin Province Specific Project of Industrial Technology Research&Development(project code:2020C025-2)2021 Interdisciplinary Integration and Innovation Project of Jilin University(project code:XJRCYB07)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(project code:CAIRIZT20220202)。
文摘For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.
基金supported by the Key Laboratory of Petroleum and Natural Gas Equipment,Ministry of Education(No.OGE202303-08)Engineering Technology Research Center for Industrial Internet of Things and Intelligent Sensing,Hubei Province(No.KXZ 202203).
文摘The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs.
基金supported by the National Natural Science Foundation of China(Grant No.62073041)the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(Grant No.LASAT-2023A04)the Fundamental Research Funds for the Central Universities(Grant Nos.2024CX06011,2024CX06079)。
文摘Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
基金supported in part by the National Natural Sciences Foundation of China (NSFC) under Grant 61525103the National Natural Sciences Foundation of China under Grant 61501140the Shenzhen Fundamental Research Project under Grant JCYJ20150930150304185
文摘Dynamic spectrum access(DSA) based on cognitive radios(CR) technique is an effective approach to address the "spectrum scarcity" issue. However, traditional CR-enabled DSA system employs only single DSA strategy, which might not be suited to the dynamic network environment. In this paper, we propose a multi-strategy DSA(MS-DSA) system, where the primary and the secondary system share spectrum resources with multiple DSA strategies simultaneously. To analyze the performance of the proposed MS-DSA system, we model it as a continuous-time Markov chain(CTMC) and derive the expressions to compute the corresponding performance metrics. Based on this, we define a utility function involving the concerns of effective throughput, interference quantity on primary users, and spectrum leasing cost. Two optimization schemes, named as spectrum allocation and false alarm probability selection, are proposed to maximize the utility function. Finally, numerical simulations are provided to validate our analysis and demonstrate that the performance can be significantly improved caused by virtues of the proposed MS-DSA system.
基金supported by the National Natural Science Foundation of China(No.11602105)the Natural Science Foundation of Jiangsu Province(No.BK20160782)
文摘The constitution,structure,working principle and launching process of the wedge-shaped pneumatic launcher of an unmanned aerial vehicle(UAV)are described.By simplifying its physical model,two dynamic models of the UAV launch system are established based on Lagrange equation and MSC.ADAMS,respectively.The curves of the acceleration and the velocity of UAV changing with time are obtained.The simulation results are compared with the experimental results to verify the correctness of the model.Then,the influence of the parameters on the launch is explored.Finally,the system is optimized.The maximum overload and the acceleration fluctuation are reduced.
文摘A multi-objective optimization of oil well drilling has been carried out using a binary coded elitist non-dominated sorting genetic algorithm.A Louisiana offshore field with abnormal formation pressure is considered for optimization.Several multi-objective optimization problems involving twoand three-objective functions were formulated and solved to fix optimal drilling variables.The important objectives are:(i) maximizing drilling depth,(ii) minimizing drilling time and (iii) minimizing drilling cost with fractional drill bit tooth wear as a constraint.Important time dependent decision variables are:(i) equivalent circulation mud density,(ii) drill bit rotation,(iii) weight on bit and (iv) Reynolds number function of circulating mud through drill bit nozzles.A set of non-dominated optimal Pareto frontier is obtained for the two-objective optimization problem whereas a non-dominated optimal Pareto surface is obtained for the three-objective optimization problem.Depending on the trade-offs involved,decision makers may select any point from the optimal Pareto frontier or optimal Pareto surface and hence corresponding values of the decision variables that may be selected for optimal drilling operation.For minimizing drilling time and drilling cost,the optimum values of the decision variables are needed to be kept at the higher values whereas the optimum values of decision variables are at the lower values for the maximization of drilling depth.
文摘Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.
基金Sponsored by the National Natural Science Foundation of China (50675109)
文摘A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equations of the whole robot and its subsystem were derived and the robot's dynamic models were established.After that,an example simulation was performed by using Matlab software and the structural optimization of the robot's key parts were discussed and analyzed in ANSYS platform.The results show that the dynamic models are correct and can be helpful for the design,validation and kinetic control based on dynamics of this kind of palletizing robots.