期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Fixed-time Target-guided Coordinate Control of Unmanned Surface Vehicles Based on Dynamic Surface Control
1
作者 LI Chao−yi XU Hai−xiang +2 位作者 YU Wen−zhao DU Zhe DING Ya−nan 《船舶力学》 北大核心 2025年第6期849-862,共14页
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b... This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results. 展开更多
关键词 unmanned surface vehicle distributed control target-guided coordinate control fixed-time convergence dynamic surface control
在线阅读 下载PDF
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
2
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:10
3
作者 廖煜雷 张铭钧 +1 位作者 万磊 李晔 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期370-378,共9页
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban... The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 trajectory tracking UNDERACTUATED unmanned surface vehicle (USV) BACKSTEPPING dynamic sliding mode control
在线阅读 下载PDF
Adaptive dynamic surface control for air-breathing hypersonic vehicle 被引量:6
4
作者 Li Zhou Shumin Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期463-479,共17页
This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying ... This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach. 展开更多
关键词 flight control dynamic surface control fuzzy-neura system disturbance observer hypersonic vehicle.
在线阅读 下载PDF
Dynamic surface control-backstepping based impedance control for 5-DOF flexible joint robots 被引量:5
5
作者 熊根良 谢宗武 +3 位作者 黄剑斌 刘宏 蒋再男 孙奎 《Journal of Central South University》 SCIE EI CAS 2010年第4期807-815,共9页
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar... A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically. 展开更多
关键词 Cartesian impedance control dynamic surface control BACKSTEPPING PPSeCo flexible joint robots
在线阅读 下载PDF
Dynamic analysis, simulation, and control of a 6-DOF IRB-120 robot manipulator using sliding mode control and boundary layer method 被引量:3
6
作者 Mojtaba HADI BARHAGHTALAB Vahid MEIGOLI +2 位作者 Mohammad Reza GOLBAHAR HAGHIGHI Seyyed Ahmad NAYERI Arash EBRAHIMI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2219-2244,共26页
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,... Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator. 展开更多
关键词 robot manipulator control IRB-120 robot sliding mode control sliding mode control with boundary layer inverse dynamic control
在线阅读 下载PDF
Dynamic signal control for at-grade intersections under preliminary autonomous vehicle environment 被引量:3
7
作者 LUO Si-da ZHANG Shuai 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期893-904,共12页
Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intel... Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand. 展开更多
关键词 dynamic traffic control vehicle-to-signal signalized intersection preliminary autonomous vehicle environment
在线阅读 下载PDF
Robust missile autopilot design based on dynamic surface control 被引量:3
8
作者 ZHOU Jianping LI Wei +1 位作者 XIA Qunli JIANG Huan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期160-171,共12页
Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missi... Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance. 展开更多
关键词 acceleration autopilot nonlinear missile dynamics time-scale separation extended state observer dynamic surface control(DSC)
在线阅读 下载PDF
Dynamic event-triggered formation control of second-order nonholonomic systems 被引量:3
9
作者 WANG Xiaoyu SUN Sijia +1 位作者 XIAO Feng YU Mei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期501-514,共14页
In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE... In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods. 展开更多
关键词 nonholonomic system dynamic event-triggered control consensus-based formation
在线阅读 下载PDF
Serret-Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:13
10
作者 廖煜雷 张铭钧 万磊 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期214-223,共10页
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa... The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 path following underactuated unmanned surface vehicle backstepping dynamic sliding mode control
在线阅读 下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
11
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
Dynamic inverse control of feedback linearization in ballistic correction based on nose cone swinging
12
作者 秦华伟 王华 《Journal of Central South University》 SCIE EI CAS 2013年第9期2447-2453,共7页
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ... It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved. 展开更多
关键词 nose cone swinging two-dimensional ballistic correction feedback linearization dynamic inverse control three-time-scale separation method
在线阅读 下载PDF
BTT autopilot design for agile missiles with aerodynamic uncertainty
13
作者 Yueyue Ma Jie Guo Shengjing Tang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期802-812,共11页
The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control syst... The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (B-I-T) steering technique is described. To address the aerodynamic un- certainties encountered by the control system, the active distur- bance rejection control (ADRC) method is introduced in the autopi- lot design. Furthermore, a compound controller, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust- ness of the controller with severe unmodeled dynamics. 展开更多
关键词 agile missile AUTOPILOT high angle of attack active dis-turbance rejection control (ADRC) dynamic surface control (DSC) extended state observer (ESO).
在线阅读 下载PDF
New robust fault-tolerant controller for self-repairing flight control systems 被引量:2
14
作者 Zhang Ren Wei Wang Zhen Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期77-82,共6页
A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the origi... A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example. 展开更多
关键词 robust control self-repairing flight control nonlinear dynamic control extended state observer compensator.
在线阅读 下载PDF
Robust H_∞ control for neutral stochastic uncertain systems with time-varying delay 被引量:3
15
作者 Guici Chen Xiaoping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期658-665,共8页
The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabil... The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique. 展开更多
关键词 stochastic robust H_∞ control neutral stochastic system uncertain system stochastic dynamic output feedback controller bilinear matrix inequality(BMI).
在线阅读 下载PDF
Vehicle path tracking by integrated chassis control 被引量:10
16
作者 Saman Salehpour Yaghoub Pourasad Seyyed Hadi Taheri 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1378-1388,共11页
The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. ... The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator(LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization(PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10% and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance. 展开更多
关键词 vehicle dynamics active control system optimal controller electronic stability program(ESP) particle swam optimization(PSO)
在线阅读 下载PDF
Learning control of nonhonolomic robot based on support vector machine
17
作者 冯勇 葛运建 +1 位作者 曹会彬 孙玉香 《Journal of Central South University》 SCIE EI CAS 2012年第12期3400-3406,共7页
A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic c... A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed. 展开更多
关键词 nonhonolomic robot learning control support vector machine nonlinear control law dynamic control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部