In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien...In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.展开更多
The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ...The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.展开更多
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed...To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.展开更多
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and...The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.展开更多
目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病...目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography,DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis,DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression,LR)模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的诊断效能。结果在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve,AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。展开更多
基金Supported by the Science and Technology Project of Guangxi(Guike AD23023002)。
文摘In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+2 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(Leading Fund(2023)09)supported by the Natural Science Research Fund of Guizhou University,ChinaProject(JYBSYS2021101)supported by the Open Fund of Key Laboratory of Safe and Effective Coal Mining,Ministry of Education,China。
文摘The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.
基金Supports from the National Natural Science Foundation of China(Grant No.12272094,No.52205185 and No.51975123)the Natural Science Foundation of Fujian Province of China(Grant No.2022J01541 and No.2020J05102)the Key Project of National Defence Innovation Zone of Science and Technology Commission of CMC(Grant No.XXX-033-01)。
文摘To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.
基金financially supported by National Natural Science Foundation of China,China (Grant No.52022012)National Key R&D Program for Young Scientists of China,China (Grant No.2022YFC3080900)。
文摘The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.
文摘目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography,DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis,DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression,LR)模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的诊断效能。结果在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve,AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。
文摘现有的基于双向长短时记忆(BiLSTM)网络的命名实体识别(NER)模型难以全面理解文本的整体语义以及捕捉复杂的实体关系。因此,提出一种基于全域信息融合和多维关系感知的NER模型。首先,通过BERT(Bidirectional Encoder Representations from Transformers)获取输入序列的向量表示,并结合BiLSTM进一步学习输入序列的上下文信息。其次,提出由梯度稳定层和特征融合模块组成的全域信息融合机制:前者使模型保持稳定的梯度传播并更新优化输入序列的表示,后者则融合BiLSTM的前后向表示获取更全面的特征表示。接着,构建多维关系感知结构学习不同子空间单词的关联性,以捕获文档中复杂的实体关系。此外,使用自适应焦点损失函数动态调整不同类别实体的权重,提高模型对少数类实体的识别性能。最后,在7个公开数据集上将所提模型和11个基线模型进行对比,实验结果表明所提模型的F1值均优于对比模型,可见该模型的综合性较优。