基于球谐函数,实现区域电离层建模,并对区域差分码偏差(differential code bias,DCB)与总电子含量(total electron content,TEC)进行解算。对于格网处垂直总电子含量(vertical total electron content,VTEC)出现的异常值,提出一种序列...基于球谐函数,实现区域电离层建模,并对区域差分码偏差(differential code bias,DCB)与总电子含量(total electron content,TEC)进行解算。对于格网处垂直总电子含量(vertical total electron content,VTEC)出现的异常值,提出一种序列无约束最小化技术(sequential unconstrained minimization technique,SUMT)修正法进行修正,利用国际全球导航卫星系统服务(International GNSS Service,IGS)网络的6个测站双频观测数据,建立了电离层VTEC区域模型,并估算了31天的卫星频间DCB,将估算值与电离层分析中心中国科学院(Chinese Academy of Sciences,CAS)发布的产品进行对比分析,结果显示:所有的卫星差值都在0.42 ns以内,其中87.5%的卫星差值在0.4 ns以内,78.1%的卫星差值在0.2 ns以内,频间DCB的平均偏差基本小于0.4 ns。此外,估算的全球定位系统(global positioning system,GPS)卫星DCB序列的标准差(standard deviation,STD)值小于0.1 ns。建立了经纬度范围为5°E~25°E、40°N~60°N的电离层区域模型,将VTEC建模结果与CAS发布的全球电离层地图(global ionospheric map,GIM)产品做差比较,结果显示整体时间点的差值均处于4 TECU以内,且超过90%的区域差值在2 TECU以内,表明估算的结果与CAS产品具有良好的一致性。展开更多
针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有...针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。展开更多
文摘针对具有星间链路(inter-satellite links,ISL)的低轨(low earth orbit,LEO)多卫星系统,提出了一种基于多卫星协作传输的和速率(sum rate,SR)最大化预编码算法.传统的预编码算法需要复杂的星上计算来得到数值解,这导致低轨卫星系统面临较大的计算开销和延迟问题.为解决上述关键问题,设计了一种基于交替方向乘子法(alternating direction method of multipliers,ADMM)的高吞吐量、低复杂度、具有闭式解的分布式预编码算法.该算法通过构建辅助变量和问题分解,将预编码设计问题转化为多个子问题并行求解,每个子问题仅有一个约束条件,并在每次迭代后仅通过星间链路交换设计的数据矩阵,从而有效实现分布式预编码.仿真结果表明,与典型的两步和速率最大化算法相比,所提出的算法可以实现更高的和速率,同时大幅降低计算复杂度.
文摘针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。