Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some are...Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.展开更多
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac...A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.展开更多
针对红外与弱可见光图像传统融合算法在结果图像中目标不突出、整体对比度降低、边缘及纹理细节不清晰、缺失等问题,本文提出一种基于感知一致性空间(Perception Unified Color Space,PUCS)和双树复小波变换(Dual Tree Complex Wavelet ...针对红外与弱可见光图像传统融合算法在结果图像中目标不突出、整体对比度降低、边缘及纹理细节不清晰、缺失等问题,本文提出一种基于感知一致性空间(Perception Unified Color Space,PUCS)和双树复小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的融合算法。首先,将红外与弱可见光图像的亮度分量由RGB空间分别转至感知一致性空间得到新的亮度分量以备后续变换处理;接着,将源图像利用DTCWT进行多尺度分解,分别获取各自的低频分量与高频分量;然后,根据不同频带系数特点,提出一种基于区域能量自适应加权的规则对低频子带分量进行融合,采用一种基于拉普拉斯能量和与梯度值向量的规则对不同尺度、方向下高频子带分量进行融合;最后,对融合后的高、低频子带分量进行DTCWT逆变换重构图像,再将其转回至RGB空间以得到最终结果。在不同场景下将本文算法与3种高效融合算法进行对比评价,实验结果表明,本文算法不但在主观视觉上具有显著的目标特征、清晰的背景纹理及边缘细节、整体对比度适宜,而且在8项客观评价指标上也取得了较好的效果。展开更多
基金supported by a grant from the National High Technology Research and Development Program of China (863 Program) (No.2008AA04A107)supported by a grant from the Major Programs of Guangdong-Hongkong in the Key Domain (No.2009498B21)
文摘Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.
基金Supported by the National Natural Science Foundation of China(61672032,61401001)the Natural Science Foundation of Anhui Province(1408085MF121)the Opening Foundation of Anhui Key Laboratory of Polarization Imaging Detection Technology(2016-KFKT-003)
文摘A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.
文摘针对红外与弱可见光图像传统融合算法在结果图像中目标不突出、整体对比度降低、边缘及纹理细节不清晰、缺失等问题,本文提出一种基于感知一致性空间(Perception Unified Color Space,PUCS)和双树复小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的融合算法。首先,将红外与弱可见光图像的亮度分量由RGB空间分别转至感知一致性空间得到新的亮度分量以备后续变换处理;接着,将源图像利用DTCWT进行多尺度分解,分别获取各自的低频分量与高频分量;然后,根据不同频带系数特点,提出一种基于区域能量自适应加权的规则对低频子带分量进行融合,采用一种基于拉普拉斯能量和与梯度值向量的规则对不同尺度、方向下高频子带分量进行融合;最后,对融合后的高、低频子带分量进行DTCWT逆变换重构图像,再将其转回至RGB空间以得到最终结果。在不同场景下将本文算法与3种高效融合算法进行对比评价,实验结果表明,本文算法不但在主观视觉上具有显著的目标特征、清晰的背景纹理及边缘细节、整体对比度适宜,而且在8项客观评价指标上也取得了较好的效果。