In this paper, a high refractive index metamaterial (HRM), whose element is composed of bilayer square patch (BSP) spaced by a dielectric plate, is proposed. By reducing the thickness of the dielectric plate and t...In this paper, a high refractive index metamaterial (HRM), whose element is composed of bilayer square patch (BSP) spaced by a dielectric plate, is proposed. By reducing the thickness of the dielectric plate and the gap between adjacent patches, the BSP can effectively enhance capacitive coupling and simultaneously suppress diamagnetic response, which significantly increases the refractive index of the proposed metamaterial. Furthermore, the high refractive index region is far away from the resonant region of the metamaterial, resulting in broadband. Based on these characteristics of BSP, a gradient refractive index (GRIN) lens with thin thickness (0.34/~0, where 2~0 is the wavelength at 5.75 GHz) is designed. By using this lens, we then design a circularly polarized horn antenna with high performance. The measurement results show that the 3-dB axial ratio bandwidth is 34.8% (4.75 GHz-6.75 GHz) and the antenna gain in this frequency range is increased by an average value of 3.4 dB. The proposed method opens up a new avenue to design high-performance antenna.展开更多
The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide ...The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61761010 and 61461016)in part by the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2015jj BB7002)+1 种基金in part by the Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processingin part by the Innovation Project of GUET Graduate Education(Grant No.2018JCX24)
文摘In this paper, a high refractive index metamaterial (HRM), whose element is composed of bilayer square patch (BSP) spaced by a dielectric plate, is proposed. By reducing the thickness of the dielectric plate and the gap between adjacent patches, the BSP can effectively enhance capacitive coupling and simultaneously suppress diamagnetic response, which significantly increases the refractive index of the proposed metamaterial. Furthermore, the high refractive index region is far away from the resonant region of the metamaterial, resulting in broadband. Based on these characteristics of BSP, a gradient refractive index (GRIN) lens with thin thickness (0.34/~0, where 2~0 is the wavelength at 5.75 GHz) is designed. By using this lens, we then design a circularly polarized horn antenna with high performance. The measurement results show that the 3-dB axial ratio bandwidth is 34.8% (4.75 GHz-6.75 GHz) and the antenna gain in this frequency range is increased by an average value of 3.4 dB. The proposed method opens up a new avenue to design high-performance antenna.
基金Sponsored by the 873 Plan by Ministry of Science and Technology of China ( 2006AA12Z1137)CSSAR Innovation Project ( 2007)
文摘The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.