Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change o...Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.展开更多
To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are re...To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.展开更多
Double-layered pellet (DLP) roasting is a novel pretreatment method for sulfur and arsenic-bearing gold concentrates. In this process, preparation of DLPs is a fundamental step which is required to produce DLPs with...Double-layered pellet (DLP) roasting is a novel pretreatment method for sulfur and arsenic-bearing gold concentrates. In this process, preparation of DLPs is a fundamental step which is required to produce DLPs with favorable mechanical strength and thermal stability. Studies were carried out to investigate the affecting factors and conditions on the preparation and properties of DLPs. The results show that moisture content has significant influence on DLPs preparation. With the increase of moisture content in the range of no more than 9.8%, drop resistance and compressive strength of green DLPs are raised and the pelletizing dynamics is improved accordingly. The optimum conditions are determined as moisture content of 9.8%, coating time of 14-16 min, drying temperature 〈80 ℃and drying gas velocity 〈1.2 m/s. When DLPs prepared under these conditions are roasted at 600 ℃ for 1 h, favorable removal and solidifying rates can be obtained, in which the removal rates of arsenic and sulfur are 94.38% and 82.55%, and the solidifying rates of arsenic and sulfur reach 99.62% and 99.79%, respectively. These results promise industrial application of DLP roasting.展开更多
Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the...Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.展开更多
Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are st...Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.展开更多
Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or C...Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.展开更多
Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influenc...Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.展开更多
Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium ...Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.展开更多
Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t...Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.展开更多
This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The...This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.展开更多
Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water conten...Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water content and mud water separation rate was established to achieve efficient resource utilization,and the feasibility of foam lightweight soil(FLS)prepared from BT was investigated.The effects of industrial waste residues(fly ash and slag powder)on the properties of FLS were studied.Meanwhile,the micro-mechanisms were revealed by XRD,SEM-EDS,and TG-DSC.The results revealed that fly ash reduced the workability and compressive strength of FLS.Slag powder can significantly enhance the compressive strength of FLS,which increased by 18.60%-23.26%,17.07%-58.54% and 12.12%-52.12%,respectively.Besides,slag powder can improve the long-term water stability performance and enhance carbonation resistance.XRD and thermal analyses showed that adding fly ash decreased the hydration degree of FLS,leading to a decrease in the hydration products.Slag powder improved the pore structure and compacted the skeleton structure of FLS.This study would provide an effective way to realize the resource utilization of BT,fly ash,and slag powder,with certain socio-economic and environmental benefits.展开更多
When the interface of a multilayered saturated soil is rough with noticeable gaps, heat flow lines converge towards the actual contact points, causing thermal flow contraction. Conversely, in the interface between two...When the interface of a multilayered saturated soil is rough with noticeable gaps, heat flow lines converge towards the actual contact points, causing thermal flow contraction. Conversely, in the interface between two layers of soil with different properties, pore water flows slowly along the pore channels, demonstrating laminar flow phenomenon. To predict the thermal contact resistance and flow contact resistance at the interface, this paper constructs general imperfect thermal contact model and general imperfect flow contact model, respectively. Utilizing a thermo-hydro- mechanical coupling model, the thermal consolidation behavior of multilayered saturated soil under two-dimensional conditions is investigated. Fourier and Laplace transformations are applied to decouple the governing equations, yielding expressions for the temperature increment, pore water pressure, and displacement in multilayered saturated soil. The inverse Fourier-Laplace transformation is then used to obtain numerical solutions, which are compared with degeneration solutions to validate the computational accuracy. The differences in the thermal consolidation process under various thermal contact and flow contact resistance models are discussed. Furthermore, the impact of parameters such as the thermal resistance coefficient, partition thermal contact coefficient, flow contact resistance coefficient, and partition flow contact coefficient on thermal consolidation are investigated. Results indicate that thermal contact resistance creates a relative thermal gradient at the interface, leading to increased pore water pressure and reduced displacement nearby. In contrast, flow contact resistance generates a relative pore pressure gradient at the interface, resulting in increased displacement within the saturated soil with minimal effect on temperature increment distribution.展开更多
In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fi...In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.展开更多
Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were propo...Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were proposed, which contain 6 meaningful resistance and reactance parameters. Considering the conductive properties of soils and dispersion effects, mathematical equations for impedance under various circuit models were deduced and studied. The mathematical expression presents two semicircles for theoretical EIS Nyquist spectrum, in which the center of one semicircle is degraded to simply the equivalent model. Based on the measured parameters of EIS Nyquist spectrum, meaningful soil parameters can easily be determined. Additionally, EIS was used to investigate the soil properties with different water contents along with the mathematical relationships and mechanism between the physical parameters and water content. Magnitude of the impedance decreases with the increase of testing frequency and water content for Bode graphs. The proposed model would help us to better understand the soil microstructure and properties and offer more reasonable explanations for EIS spectra.展开更多
To assess the risks of forchlorfenuron after application, a residue analysis method for ferchlorfenuron in cucumbers and the red soil of Southern China was established, and the dissipation behavior and residue charact...To assess the risks of forchlorfenuron after application, a residue analysis method for ferchlorfenuron in cucumbers and the red soil of Southern China was established, and the dissipation behavior and residue characteristics of forchlorfenuron were studied under field conditions. The field trials, including dissipation and residue experiments, were conducted in Hunan, Yunnan and Hainan Provinces. Forchlorfenuron was applied at 32 a.i.g ha^-1 rate for the dissipation study and both 21 and 32 a.i.g ha^-1 for the residue study. Representative cucumbers and soil samples were collected at predetermined intervals for HPLC for UV- detector analysis. The average recoveries of the method were 80.8%-92.0% with coefficients variation (CV) between 0.4% and 11.8%. The detection limit of forchlorfenuron in cucumbers and soil samples was 0.003 mg·kg^-1 and the minimum detectable amount was 3.0× 10^-10 g. The half life of forchlorfenuron in cucumbers in the three provinces changed as: Yunnan (5.50 days), Hunan (5.88 days), and Hainan (6.53 days) and in the soil was observed: Hainan (6.54 days), Hunan (7.64 days), and Yunnan (8.39 days). The maximum terminal residue in cucumbers at 32 a.i.g ha^-1 rate after 5 days was 0.009 mg·kg^-1 (Yunnan) followed by 0.0085 mg·kg^-1 (Hainan) and 0.0082 mg·kg^-1(Hunan) which was below MRL value of 0.01 mg·kg^-1 established by the USA, EPA. So a waiting period of 5 days should be established after spaying on cucumbers to avoid hazard to human beings.展开更多
The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in He...The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.展开更多
基金Projects(50878191,51109092)supported by the National Natural Science Foundation of China
文摘Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.
基金Project(51578511)supported by the National Natural Science Foundation of China。
文摘To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.
基金Project(51074182)supported by the National Natural Science Foundation of ChinaProject(201012200032)supported by the Fundamental Research Funds for the Central Universities,China
文摘Double-layered pellet (DLP) roasting is a novel pretreatment method for sulfur and arsenic-bearing gold concentrates. In this process, preparation of DLPs is a fundamental step which is required to produce DLPs with favorable mechanical strength and thermal stability. Studies were carried out to investigate the affecting factors and conditions on the preparation and properties of DLPs. The results show that moisture content has significant influence on DLPs preparation. With the increase of moisture content in the range of no more than 9.8%, drop resistance and compressive strength of green DLPs are raised and the pelletizing dynamics is improved accordingly. The optimum conditions are determined as moisture content of 9.8%, coating time of 14-16 min, drying temperature 〈80 ℃and drying gas velocity 〈1.2 m/s. When DLPs prepared under these conditions are roasted at 600 ℃ for 1 h, favorable removal and solidifying rates can be obtained, in which the removal rates of arsenic and sulfur are 94.38% and 82.55%, and the solidifying rates of arsenic and sulfur reach 99.62% and 99.79%, respectively. These results promise industrial application of DLP roasting.
基金National Natural Science Foundation of China(No.41967035)。
文摘Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195).
文摘Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U2340219)。
文摘Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.
基金Project(2020YFC1908802)supported by the National Key Research and Development Project of China。
文摘Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.
基金Project(22376221)supported by the National Natural Science Foundation of ChinaProject(2024JJ2074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST。
文摘Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.
基金Projects(U24B20113,42477162) supported by the National Natural Science Foundation of ChinaProject(2025C02228) supported by the Primary Research and Development Plan of Zhejiang Province,China。
文摘Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.
文摘This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.
基金Project(5206800)supported by the National Natural Science Foundation of ChinaProject(2024JJA160096)supported by the Natural Science Foundation of Guangxi Province,China。
文摘Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water content and mud water separation rate was established to achieve efficient resource utilization,and the feasibility of foam lightweight soil(FLS)prepared from BT was investigated.The effects of industrial waste residues(fly ash and slag powder)on the properties of FLS were studied.Meanwhile,the micro-mechanisms were revealed by XRD,SEM-EDS,and TG-DSC.The results revealed that fly ash reduced the workability and compressive strength of FLS.Slag powder can significantly enhance the compressive strength of FLS,which increased by 18.60%-23.26%,17.07%-58.54% and 12.12%-52.12%,respectively.Besides,slag powder can improve the long-term water stability performance and enhance carbonation resistance.XRD and thermal analyses showed that adding fly ash decreased the hydration degree of FLS,leading to a decrease in the hydration products.Slag powder improved the pore structure and compacted the skeleton structure of FLS.This study would provide an effective way to realize the resource utilization of BT,fly ash,and slag powder,with certain socio-economic and environmental benefits.
基金Projects(52108347, 52179112, 52178371) supported by the National Natural Science Foundation of ChinaProjects(2020C01147, 2023C01165) supported by the Primary Research and Development Plan of Zhejiang Province,ChinaProject(LQ22E080010) supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,China。
文摘When the interface of a multilayered saturated soil is rough with noticeable gaps, heat flow lines converge towards the actual contact points, causing thermal flow contraction. Conversely, in the interface between two layers of soil with different properties, pore water flows slowly along the pore channels, demonstrating laminar flow phenomenon. To predict the thermal contact resistance and flow contact resistance at the interface, this paper constructs general imperfect thermal contact model and general imperfect flow contact model, respectively. Utilizing a thermo-hydro- mechanical coupling model, the thermal consolidation behavior of multilayered saturated soil under two-dimensional conditions is investigated. Fourier and Laplace transformations are applied to decouple the governing equations, yielding expressions for the temperature increment, pore water pressure, and displacement in multilayered saturated soil. The inverse Fourier-Laplace transformation is then used to obtain numerical solutions, which are compared with degeneration solutions to validate the computational accuracy. The differences in the thermal consolidation process under various thermal contact and flow contact resistance models are discussed. Furthermore, the impact of parameters such as the thermal resistance coefficient, partition thermal contact coefficient, flow contact resistance coefficient, and partition flow contact coefficient on thermal consolidation are investigated. Results indicate that thermal contact resistance creates a relative thermal gradient at the interface, leading to increased pore water pressure and reduced displacement nearby. In contrast, flow contact resistance generates a relative pore pressure gradient at the interface, resulting in increased displacement within the saturated soil with minimal effect on temperature increment distribution.
基金Project(51008007)supported by the National Natural Science Foundation of ChinaProject(2013318J01100)supported by the Science and Technology Project of Ministry of Communications,China
文摘In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.
基金Projects(5120833351078253)supported by the National Natural Science Foundation of China+4 种基金Projects(2014011036-12014131019TYUT2014YQ017OIT2015)supported by the Natural Science Foundation of Shanxi ProvinceChina
文摘Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were proposed, which contain 6 meaningful resistance and reactance parameters. Considering the conductive properties of soils and dispersion effects, mathematical equations for impedance under various circuit models were deduced and studied. The mathematical expression presents two semicircles for theoretical EIS Nyquist spectrum, in which the center of one semicircle is degraded to simply the equivalent model. Based on the measured parameters of EIS Nyquist spectrum, meaningful soil parameters can easily be determined. Additionally, EIS was used to investigate the soil properties with different water contents along with the mathematical relationships and mechanism between the physical parameters and water content. Magnitude of the impedance decreases with the increase of testing frequency and water content for Bode graphs. The proposed model would help us to better understand the soil microstructure and properties and offer more reasonable explanations for EIS spectra.
文摘To assess the risks of forchlorfenuron after application, a residue analysis method for ferchlorfenuron in cucumbers and the red soil of Southern China was established, and the dissipation behavior and residue characteristics of forchlorfenuron were studied under field conditions. The field trials, including dissipation and residue experiments, were conducted in Hunan, Yunnan and Hainan Provinces. Forchlorfenuron was applied at 32 a.i.g ha^-1 rate for the dissipation study and both 21 and 32 a.i.g ha^-1 for the residue study. Representative cucumbers and soil samples were collected at predetermined intervals for HPLC for UV- detector analysis. The average recoveries of the method were 80.8%-92.0% with coefficients variation (CV) between 0.4% and 11.8%. The detection limit of forchlorfenuron in cucumbers and soil samples was 0.003 mg·kg^-1 and the minimum detectable amount was 3.0× 10^-10 g. The half life of forchlorfenuron in cucumbers in the three provinces changed as: Yunnan (5.50 days), Hunan (5.88 days), and Hainan (6.53 days) and in the soil was observed: Hainan (6.54 days), Hunan (7.64 days), and Yunnan (8.39 days). The maximum terminal residue in cucumbers at 32 a.i.g ha^-1 rate after 5 days was 0.009 mg·kg^-1 (Yunnan) followed by 0.0085 mg·kg^-1 (Hainan) and 0.0082 mg·kg^-1(Hunan) which was below MRL value of 0.01 mg·kg^-1 established by the USA, EPA. So a waiting period of 5 days should be established after spaying on cucumbers to avoid hazard to human beings.
文摘The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.