为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线...为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线性力-变形行为,基于随机等效线性化和模式搜索优化算法并考虑地震动模型,在频域内建立了BIS+TTMDI体系的优化设计框架。分别从鲁棒性、有效性、刚度和阻尼系数、冲程及对地震频率敏感性方面对BIS+TTMDI体系的性能进行评估,并与BIS+调谐质量阻尼器(Tuned Mass Damper, TMD)、串并联调谐质量阻尼器(TunedTandemMassDamper,TTMD)和调谐质量阻尼器惯容器(TunedMass Damper-Inerter, TMDI)进行比较。通过对近场地震动下某七层混合基础隔震结构(包括BIS+TTMDI和BIS+TMDI体系)的动力弹塑性分析,评价了其减/隔震性能。结果表明:BIS+TTMDI体系具有最好的减/隔震性能和强鲁棒性;而且在BIS+TTMDI体系中TTMDI的总阻尼需求不到BIS+TMDI体系中TMDI的一半,因而更为经济实用。展开更多
为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控...为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。展开更多
为了提高双层被动隔振系统隔离低频结构噪声的效果,采用混合隔振思想,将小脑模型神经网络(cerebellar model articulation controller,CMAC)理论与PID控制算法相结合,设计了双层混合隔振系统CMAC与PID复合控制器,仿真分析了双层混合隔...为了提高双层被动隔振系统隔离低频结构噪声的效果,采用混合隔振思想,将小脑模型神经网络(cerebellar model articulation controller,CMAC)理论与PID控制算法相结合,设计了双层混合隔振系统CMAC与PID复合控制器,仿真分析了双层混合隔振系统在不同低频正弦激励信号下的加速度和加速度功率谱。仿真结果表明,采用CMAC与PID复合控制的双层混合隔振系统的隔振效果要优于被动双层隔振系统的隔振效果。展开更多
文摘为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线性力-变形行为,基于随机等效线性化和模式搜索优化算法并考虑地震动模型,在频域内建立了BIS+TTMDI体系的优化设计框架。分别从鲁棒性、有效性、刚度和阻尼系数、冲程及对地震频率敏感性方面对BIS+TTMDI体系的性能进行评估,并与BIS+调谐质量阻尼器(Tuned Mass Damper, TMD)、串并联调谐质量阻尼器(TunedTandemMassDamper,TTMD)和调谐质量阻尼器惯容器(TunedMass Damper-Inerter, TMDI)进行比较。通过对近场地震动下某七层混合基础隔震结构(包括BIS+TTMDI和BIS+TMDI体系)的动力弹塑性分析,评价了其减/隔震性能。结果表明:BIS+TTMDI体系具有最好的减/隔震性能和强鲁棒性;而且在BIS+TTMDI体系中TTMDI的总阻尼需求不到BIS+TMDI体系中TMDI的一半,因而更为经济实用。
文摘为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。
文摘为了提高双层被动隔振系统隔离低频结构噪声的效果,采用混合隔振思想,将小脑模型神经网络(cerebellar model articulation controller,CMAC)理论与PID控制算法相结合,设计了双层混合隔振系统CMAC与PID复合控制器,仿真分析了双层混合隔振系统在不同低频正弦激励信号下的加速度和加速度功率谱。仿真结果表明,采用CMAC与PID复合控制的双层混合隔振系统的隔振效果要优于被动双层隔振系统的隔振效果。