期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
3
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
4
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
5
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
6
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
7
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
Application of improved PSO to power transmission congestion management optimization model
8
作者 李翔 刘预胜 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期347-351,共5页
The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the ... The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the adoption of the improved PSO algorithm were solved and the results were analyzed. The results show that it is beneficial to obtaining the optimal solution by increasing the number of particles but that will also increase the operation time. On the aspects of solving continuous differentiable non-linear optimization model with equality and inequality constraints, the optimization result of PSO algorithm is the same as that of the interior point method. Compared with genetic algorithms (GA), PSO algorithm is more effective in the local optimization, and unlike GA, it will not be early maturity. Meanwhile, PSO algorithm is also more effective in the boundary optimization than genetic algorithm. 展开更多
关键词 CONGESTION management particle swarm optimization (PSO) algorithm double FITNESS DEGREE
在线阅读 下载PDF
基于粒子群-伪谱凸优化的RBCC中段组合轨迹优化方法
9
作者 杨宇轩 费王华 +2 位作者 刘海礼 王培臣 闫循良 《航空兵器》 北大核心 2025年第1期115-125,共11页
针对RBCC中段组合轨迹优化设计问题,提出了一种基于粒子群-伪谱凸优化的嵌套优化方法。首先,根据飞行任务需求给出了中段飞行方案,并对组合轨迹优化问题进行了描述;其次,通过分析组合轨迹各段耦合机理,将组合轨迹优化问题转化为段间衔... 针对RBCC中段组合轨迹优化设计问题,提出了一种基于粒子群-伪谱凸优化的嵌套优化方法。首先,根据飞行任务需求给出了中段飞行方案,并对组合轨迹优化问题进行了描述;其次,通过分析组合轨迹各段耦合机理,将组合轨迹优化问题转化为段间衔接静态参数寻优与子段轨迹优化问题,并设计基于粒子群-伪谱凸优化的双层嵌套优化策略对该问题进行求解;上层通过粒子群算法确定静态参数,在此基础上,下层采用伪谱凸优化方法分段进行轨迹优化设计,通过伪谱离散和凸化技术的有机结合,将非凸、非线性优化问题转化为离散凸优化问题,并设计了基于信赖域收缩的序列凸优化求解策略,在保证各段轨迹最优性的同时,实现了中段组合轨迹优化问题的快速求解;最终,以某RBCC动力概念飞行器为例,完成了中段组合轨迹优化设计仿真,验证了所提方法的可行性和有效性。 展开更多
关键词 RBCC 中段组合轨迹 双层嵌套优化 粒子群 伪谱凸优化
在线阅读 下载PDF
带忽略工序的多目标批量流混合流水车间调度
10
作者 李浩平 朱成彪 +5 位作者 陈心怡 彭巍 孟荣华 金朱鸿 杜昕毅 蔡浏阳 《计算机集成制造系统》 北大核心 2025年第1期89-101,共13页
针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框... 针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框架,外层进行柔性分批,内层搜索排序及调度方案。针对批量分割、工件批排序、机器分配3个问题,设计基于批量、工序和机器的三段式编码,内层将狼群算法的分级和游走策略引入粒子群算法,设计了一种基于PBX(Position-based Crossover)交叉操作的围攻策略以提高算法的局部搜索及寻优能力。通过仿真实验并与几种启发式算法进行对比及实例验证,说明了调度模型和算法的可行性和优越性。 展开更多
关键词 批量流 混合流水车间调度 忽略工序 改进PSO-GA混合算法 双层搜索框架 柔性分批
在线阅读 下载PDF
基于改进PSO算法的光伏阵列MPPT研究 被引量:4
11
作者 商立群 闵鹏波 张建涛 《传感器与微系统》 CSCD 北大核心 2024年第8期35-39,共5页
为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,... 为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,引入了Logistic-Tent混沌映射和TVCF,既可增强种群多样性,避免粒子早熟,跳出局部优化,又能加快粒子收敛,提升全局寻优能力。最后在MATLAB/Simu-link上进行仿真。仿真结果表明:相比于传统MPPT算法,LT-TVCFPSO算法能够快速准确地追踪到全局最大功率点(GMPP)。 展开更多
关键词 全局寻优 改进粒子群优化算法 双重混沌映射 时变双重压缩因子 全局最大功率点
在线阅读 下载PDF
密度峰值聚类在塔机损伤诊断中的应用研究 被引量:1
12
作者 王胜春 安宏 +1 位作者 安增辉 李文豪 《机械设计与制造》 北大核心 2024年第2期98-104,共7页
建立塔机有限元模型,获取塔机完好状态和各损伤工况的各采集点的动态位移。提出了两种模型建立方法,基于悬臂梁的双输入单输出模型和基于时域数据的动态双输入单输出模型,对基于时域数据的双输入单输出模型首先利用最小二乘法计算参数初... 建立塔机有限元模型,获取塔机完好状态和各损伤工况的各采集点的动态位移。提出了两种模型建立方法,基于悬臂梁的双输入单输出模型和基于时域数据的动态双输入单输出模型,对基于时域数据的双输入单输出模型首先利用最小二乘法计算参数初值,进一步利用粒子群优化方法进行参数优化,提高了模型精度。以完好工况的塔机数据为基础,建立基于悬臂梁的双输入单输出模型和基于时域数据的双输入单输出模型,计算参数,建立损伤识别模型,用待检状态的位移数值拟合模型,用两种模型计算出的残差方差做损伤因子,利用密度峰值聚类方法对损伤因子进行分析,实现了对塔机的损伤判定和损伤位置的确定。这种基于密度峰值聚类的诊断方法可对塔机微小损伤进行智能诊断和位置确定,该方法只需要塔机完好状态的数据和待检状态的数据即可自动诊断,解决了塔机损伤识别中损伤数据难以获取,因而无法实现智能训练和诊断的问题。 展开更多
关键词 塔机 双输入单输出模型 粒子群优化 密度峰值聚类 损伤因子
在线阅读 下载PDF
双面渐进成形工艺参数优化及减薄率的预测 被引量:1
13
作者 张澧桐 田雨 +1 位作者 顾鹏 张鑫 《制造技术与机床》 北大核心 2024年第7期131-138,共8页
渐进成形的减薄率是衡量成形件质量的重要指标。文章采用Box-Behnken设计实验方案进行试验,分析了刀具直径D、层间距Δz、成形角α和板厚t对减薄率的影响,并得到试验最优的参数组合。建立了工艺参数到减薄率的BP神经网络模型,用数据训... 渐进成形的减薄率是衡量成形件质量的重要指标。文章采用Box-Behnken设计实验方案进行试验,分析了刀具直径D、层间距Δz、成形角α和板厚t对减薄率的影响,并得到试验最优的参数组合。建立了工艺参数到减薄率的BP神经网络模型,用数据训练集训练网络,计算测试集减薄率预测模型的精度。针对BP神经网络平均误差大(6.42%)的问题,用粒子群算法(PSO)优化了BP神经网络模型参数,使预测误差降低到2.24%。PSO-BP神经网络模型可以有效预测工艺参数和减薄率的关系。 展开更多
关键词 双面渐进成形 减薄率 智能神经网络 粒子群算法 正交试验
在线阅读 下载PDF
基于粒子群和差分进化算法的含分布式电源配电网故障区段定位 被引量:65
14
作者 周湶 郑柏林 +3 位作者 廖瑞金 李剑 马小敏 徐智 《电力系统保护与控制》 EI CSCD 北大核心 2013年第4期33-37,共5页
配电网中引入分布式电源将导致传统的故障区段定位方法不再适用。通过构建新的开关函数,提出了基于二进制混合算法的配电网故障区段定位方法。该方法可动态适应分布式电源的投切,在进行多重故障定位时只需确定一次正方向,利用双种群进... 配电网中引入分布式电源将导致传统的故障区段定位方法不再适用。通过构建新的开关函数,提出了基于二进制混合算法的配电网故障区段定位方法。该方法可动态适应分布式电源的投切,在进行多重故障定位时只需确定一次正方向,利用双种群进化策略和信息交换机制实现了粒子群和差分进化算法的混合。算例分析结果表明该方法能够对含分布式电源的配电网中的单一和多重故障进行准确定位,并且具有一定的容错性和高效性。 展开更多
关键词 粒子群 差分进化 混合算法 双种群 分布式电源 多重故障定位
在线阅读 下载PDF
基于粒子群优化算法的支持向量机研究 被引量:51
15
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子群优化算法(PSO) 支持向量机(SVM) 优化 双螺旋分类 评价
在线阅读 下载PDF
基于小生境粒子群算法的刀具容屑槽刃磨工艺设计 被引量:13
16
作者 李国超 周宏根 +2 位作者 景旭文 田桂中 李磊 《计算机集成制造系统》 EI CSCD 北大核心 2019年第7期1746-1756,共11页
为解决整体刀具容屑槽刃磨制造工艺设计过程中的砂轮形状和位姿求解问题,提出基于已有双斜面型(DOB型)砂轮库或基于DOB型砂轮尺寸和位姿组合优化的容屑槽刃磨成形工艺设计方法。首先,建立反映不同刃磨精度需求的目标函数,将容屑槽刃磨... 为解决整体刀具容屑槽刃磨制造工艺设计过程中的砂轮形状和位姿求解问题,提出基于已有双斜面型(DOB型)砂轮库或基于DOB型砂轮尺寸和位姿组合优化的容屑槽刃磨成形工艺设计方法。首先,建立反映不同刃磨精度需求的目标函数,将容屑槽刃磨工艺制定问题转化为目标函数最小值求解问题;其次,作为目标函数核心组成部分,基于空间解析几何及图形算法建立具有强鲁棒性的容屑槽预测方法,实现根据已知砂轮形状和位姿快速求解加工获得的容屑槽端截线轮廓及前角、芯径、槽宽等关键结构参数;然后,基于砂轮位姿对容屑槽形状的影响规律,建立了基于环形拓扑小生境粒子群优化算法的目标函数最优解搜索方法。通过3个算例验证了研究成果的有效性。 展开更多
关键词 容屑槽 成形工艺 双斜面砂轮 小生境粒子群算法
在线阅读 下载PDF
粒子群算法的改进及其在求解约束优化问题中的应用 被引量:33
17
作者 刘华蓥 林玉娥 王淑云 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第4期472-476,共5页
在用粒子群算法求解约束优化问题时,处理好约束条件是取得好的优化效果的关键.通过对约束问题特征和粒子群算法结构的研究,提出求解约束优化问题一种改进的粒子群算法,该算法让每个粒子都具有双适应值,通过双适应值决定粒子优劣,并提出... 在用粒子群算法求解约束优化问题时,处理好约束条件是取得好的优化效果的关键.通过对约束问题特征和粒子群算法结构的研究,提出求解约束优化问题一种改进的粒子群算法,该算法让每个粒子都具有双适应值,通过双适应值决定粒子优劣,并提出了自适应保留不可行粒子的策略.实验证明,改进的算法是可行的,且在精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等算法. 展开更多
关键词 粒子群优化算法 双适应值 自适应
在线阅读 下载PDF
云计算环境下基于改进粒子群的任务调度算法 被引量:26
18
作者 封良良 张陶 +2 位作者 贾振红 夏晓燕 覃锡忠 《计算机工程》 CAS CSCD 2013年第5期183-186,191,共5页
现有云计算任务调度算法为追求最短完成时间不能很好地兼顾成本。为此,提出一种基于改进粒子群的任务调度算法。采用间接编码方式对每个子任务占用的资源进行编码,给出解码方式,定义考虑时间和成本的适应度函数,确立粒子位置和速度的更... 现有云计算任务调度算法为追求最短完成时间不能很好地兼顾成本。为此,提出一种基于改进粒子群的任务调度算法。采用间接编码方式对每个子任务占用的资源进行编码,给出解码方式,定义考虑时间和成本的适应度函数,确立粒子位置和速度的更新方法。实验结果表明,在相同的条件设置下,该算法的总任务完成时间和总任务完成成本小于传统粒子群优化算法。 展开更多
关键词 云计算 任务调度 时间成本 双适应度粒子群优化 粒子群优化算法
在线阅读 下载PDF
基于改进双粒子群算法的舰船电力系统网络故障重构 被引量:23
19
作者 张兰勇 孟坤 +1 位作者 刘胜 李佐勇 《电力系统保护与控制》 EI CSCD 北大核心 2019年第9期90-96,共7页
舰船电力系统环形网络故障重构本质上是带约束的多目标非线性组合优化问题。为了解决舰船电力系统发生故障时的供电恢复问题,提出了一种改进双粒子群优化算法进行求解。此算法分为主、辅两个粒子群,主粒子群改进了种群初始化、自适应调... 舰船电力系统环形网络故障重构本质上是带约束的多目标非线性组合优化问题。为了解决舰船电力系统发生故障时的供电恢复问题,提出了一种改进双粒子群优化算法进行求解。此算法分为主、辅两个粒子群,主粒子群改进了种群初始化、自适应调整惯性权重和学习因子,提高了主粒子群算法的全局寻优能力。同时,辅助粒子群还采用改进的混沌局部搜索策略,增强了种群多样性及局部寻优能力,有效地解决了粒子群算法中容易陷入局部极值的问题。通过系统仿真,分别将几种不同的优化算法进行比较。结果表明该算法具有很高的搜索效率和寻优能力,能有效地提高故障恢复的速度与精度,在处理舰船电力系统网络故障重构方面具有较好的效果。 展开更多
关键词 舰船电力系统 故障重构 改进双粒子群算法 混沌局部搜索
在线阅读 下载PDF
动态粒子群优化算法 被引量:20
20
作者 于雪晶 麻肖妃 夏斌 《计算机工程》 CAS CSCD 北大核心 2010年第4期193-194,197,共3页
针对普通粒子群优化算法难以在动态环境下有效逼近最优位置的问题,提出一种动态粒子群优化算法。设置敏感粒子和响应阈值,当敏感粒子的适应度值变化超过响应阈值时,按一定比例重新初始化种群和粒子速度。设计双峰DF1动态模型,用于验证... 针对普通粒子群优化算法难以在动态环境下有效逼近最优位置的问题,提出一种动态粒子群优化算法。设置敏感粒子和响应阈值,当敏感粒子的适应度值变化超过响应阈值时,按一定比例重新初始化种群和粒子速度。设计双峰DF1动态模型,用于验证该算法的性能,仿真实验结果表明其动态极值跟踪能力较强。 展开更多
关键词 粒子群优化算法 动态 双峰DF1模型 敏感粒子
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部