Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar...Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.展开更多
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac...A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.展开更多
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ...The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.展开更多
红外焦平面成像质量受材料生长及器件制备工艺的影响,易出现盲元、条纹噪声等缺陷。条纹噪声经常会导致盲元的检测偏差,准确的盲元检测对于后续图像处理具有重要意义。利用双密度双树复数小波分解的多方向性小波系数,结合广义高斯分布...红外焦平面成像质量受材料生长及器件制备工艺的影响,易出现盲元、条纹噪声等缺陷。条纹噪声经常会导致盲元的检测偏差,准确的盲元检测对于后续图像处理具有重要意义。利用双密度双树复数小波分解的多方向性小波系数,结合广义高斯分布将高频小波系数按照对条纹噪声影响程度分别赋予不同权值并进行单支重构,消除了条纹噪声对盲元检测的影响,得到初步"干净"的预处理图像,进而对预处理图像运用3σ准则进行盲元检测。通过短波Hg Cd Te红外焦平面成像的实践验证,该方法对具有条纹噪声特征的红外图像盲元检测更加准确。展开更多
提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图...提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图像的更精确重构.实验结果表明:在相同压缩比的前提下,与传统使用DWT基且未考虑变换系数结构化特征的重构算法相比,使用DDDT-CWT基和融入结构化特征的重构算法分别可获得2.9~3.2 d B与0.2~1.2 d B的增益,综合两者后的重构算法可获得3.8~4.3 d B以上的增益.展开更多
针对图像处理的需求,提出一种基于双树复小波变换的图像去噪算法。该算法对图像进行双树复小波变换,对变换后的系数利用最大似然估计和维纳滤波进行去噪,采用最大后验概率来估计双树复小波的方差,利用维纳滤波得到去噪后的系数,通过双...针对图像处理的需求,提出一种基于双树复小波变换的图像去噪算法。该算法对图像进行双树复小波变换,对变换后的系数利用最大似然估计和维纳滤波进行去噪,采用最大后验概率来估计双树复小波的方差,利用维纳滤波得到去噪后的系数,通过双树复小波反变换得到去噪后的图像。在分解层计算方差时,均采用在4×4的结构元素内基于最大值和次大值坍缩后的邻域来计算方差。实验结果表明,该算法的PSNR对比其他文献提高0.2 d B左右,运行时间减少5 s。展开更多
基金supported by the National Natural Science Foundation of China(No.11402112)the National Key Technology Support Program (No.2012BAA01B02)。
文摘Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.
基金Supported by the National Natural Science Foundation of China(61672032,61401001)the Natural Science Foundation of Anhui Province(1408085MF121)the Opening Foundation of Anhui Key Laboratory of Polarization Imaging Detection Technology(2016-KFKT-003)
文摘A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.
文摘The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.
文摘红外焦平面成像质量受材料生长及器件制备工艺的影响,易出现盲元、条纹噪声等缺陷。条纹噪声经常会导致盲元的检测偏差,准确的盲元检测对于后续图像处理具有重要意义。利用双密度双树复数小波分解的多方向性小波系数,结合广义高斯分布将高频小波系数按照对条纹噪声影响程度分别赋予不同权值并进行单支重构,消除了条纹噪声对盲元检测的影响,得到初步"干净"的预处理图像,进而对预处理图像运用3σ准则进行盲元检测。通过短波Hg Cd Te红外焦平面成像的实践验证,该方法对具有条纹噪声特征的红外图像盲元检测更加准确。
文摘提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图像的更精确重构.实验结果表明:在相同压缩比的前提下,与传统使用DWT基且未考虑变换系数结构化特征的重构算法相比,使用DDDT-CWT基和融入结构化特征的重构算法分别可获得2.9~3.2 d B与0.2~1.2 d B的增益,综合两者后的重构算法可获得3.8~4.3 d B以上的增益.
文摘针对图像处理的需求,提出一种基于双树复小波变换的图像去噪算法。该算法对图像进行双树复小波变换,对变换后的系数利用最大似然估计和维纳滤波进行去噪,采用最大后验概率来估计双树复小波的方差,利用维纳滤波得到去噪后的系数,通过双树复小波反变换得到去噪后的图像。在分解层计算方差时,均采用在4×4的结构元素内基于最大值和次大值坍缩后的邻域来计算方差。实验结果表明,该算法的PSNR对比其他文献提高0.2 d B左右,运行时间减少5 s。