The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the ...The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the adoption of the improved PSO algorithm were solved and the results were analyzed. The results show that it is beneficial to obtaining the optimal solution by increasing the number of particles but that will also increase the operation time. On the aspects of solving continuous differentiable non-linear optimization model with equality and inequality constraints, the optimization result of PSO algorithm is the same as that of the interior point method. Compared with genetic algorithms (GA), PSO algorithm is more effective in the local optimization, and unlike GA, it will not be early maturity. Meanwhile, PSO algorithm is also more effective in the boundary optimization than genetic algorithm.展开更多
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the adoption of the improved PSO algorithm were solved and the results were analyzed. The results show that it is beneficial to obtaining the optimal solution by increasing the number of particles but that will also increase the operation time. On the aspects of solving continuous differentiable non-linear optimization model with equality and inequality constraints, the optimization result of PSO algorithm is the same as that of the interior point method. Compared with genetic algorithms (GA), PSO algorithm is more effective in the local optimization, and unlike GA, it will not be early maturity. Meanwhile, PSO algorithm is also more effective in the boundary optimization than genetic algorithm.
文摘差分进化(differential evolution,DE)算法简单高效,但其控制参数和差分变异策略对待解的优化问题较为敏感,对问题的依赖性较强.为克服这一缺陷,提出了一种新的基于三角的骨架差分进化算法(bare-bones differential evolution algorithm based on trigonometry,tBBDE),并使用随机泛函理论分析了算法的收敛性.算法采用了三角高斯变异策略以及三元交叉和交叉概率自适应策略对个体进行更新,并在收敛停滞时进行种群扰动,算法不仅继承了骨架算法无参数的优点,而且还很好地保留了DE算法基于随机个体差异进行的特性.通过对包括单峰函数、多峰函数、偏移函数和高维函数的26个基准测试函数的仿真实验和分析,验证了新算法的有效性和可靠性,经与多种同类的骨架算法以及知名的DE算法在统计学上的分析比较,证明了该算法是一种具有竞争力的新算法.