基于车辆-轨道耦合动力学理论,建立高速铁路车辆-轨道-桥梁耦合模型,采用有限元法,分别研究双块式无砟轨道结构中减振垫对轨道和桥梁时域、频域动力性能的影响,并研究其减振效果。研究结果表明:在时域内,减振双块式无砟轨道使钢轨、道...基于车辆-轨道耦合动力学理论,建立高速铁路车辆-轨道-桥梁耦合模型,采用有限元法,分别研究双块式无砟轨道结构中减振垫对轨道和桥梁时域、频域动力性能的影响,并研究其减振效果。研究结果表明:在时域内,减振双块式无砟轨道使钢轨、道床板的竖向位移增加,并且使道床板梁端竖向位移显著增加;使钢轨、道床板竖向加速度增加,使桥梁跨中竖向加速度明显减小。在频域内,减振双块式无砟轨道使桥梁加速度振级减小5 d B,减振效果良好,并且在10~40 Hz频率范围内减振效果最明显。然而,道床板加速度振级增加了8 d B。减振垫使振动能量更多地滞留在道床板内,对道床板的正常使用不利。展开更多
为研究道床板上拱对无砟轨道结构性能和行车品质的影响,建立含道床板上拱的列车-轨道系统振动分析伤损模型,编制FORTRAN计算程序并进行模型验证。基于车轨系统空间振动分析理论,分别计算4种道床板上拱类型的双块式无砟轨道在高速列车作...为研究道床板上拱对无砟轨道结构性能和行车品质的影响,建立含道床板上拱的列车-轨道系统振动分析伤损模型,编制FORTRAN计算程序并进行模型验证。基于车轨系统空间振动分析理论,分别计算4种道床板上拱类型的双块式无砟轨道在高速列车作用下的空间振动响应,分析比较此系统振动响应随道床板上拱类型,不平顺幅值及车速的影响规律,并对道床板上拱伤损评级。研究结果表明:各种道床板上拱类型的车轨系统动力响应均随运行速度和不平顺幅值的提升而增大。速度相同时,考虑了复合不平顺和离缝的上拱类型4的车轨系统振动响应最大,而仅考虑高低不平顺的上拱类型1的车轨系统振动响应最小。车速300 km/h时,高程偏差为11 mm的道床板上拱类型1引起的车体垂向振动加速度、轮轨作用力,脱轨系数和轮重减载率峰值分别为0.918 m/s2,100.740 k N,0.305和0.255;而类型4依次为2.037 m/s2,185.219 k N,12.503和1.727。上述机理和数据可为道床板上拱伤损评级提供参考。展开更多
文摘基于车辆-轨道耦合动力学理论,建立高速铁路车辆-轨道-桥梁耦合模型,采用有限元法,分别研究双块式无砟轨道结构中减振垫对轨道和桥梁时域、频域动力性能的影响,并研究其减振效果。研究结果表明:在时域内,减振双块式无砟轨道使钢轨、道床板的竖向位移增加,并且使道床板梁端竖向位移显著增加;使钢轨、道床板竖向加速度增加,使桥梁跨中竖向加速度明显减小。在频域内,减振双块式无砟轨道使桥梁加速度振级减小5 d B,减振效果良好,并且在10~40 Hz频率范围内减振效果最明显。然而,道床板加速度振级增加了8 d B。减振垫使振动能量更多地滞留在道床板内,对道床板的正常使用不利。
文摘为研究道床板上拱对无砟轨道结构性能和行车品质的影响,建立含道床板上拱的列车-轨道系统振动分析伤损模型,编制FORTRAN计算程序并进行模型验证。基于车轨系统空间振动分析理论,分别计算4种道床板上拱类型的双块式无砟轨道在高速列车作用下的空间振动响应,分析比较此系统振动响应随道床板上拱类型,不平顺幅值及车速的影响规律,并对道床板上拱伤损评级。研究结果表明:各种道床板上拱类型的车轨系统动力响应均随运行速度和不平顺幅值的提升而增大。速度相同时,考虑了复合不平顺和离缝的上拱类型4的车轨系统振动响应最大,而仅考虑高低不平顺的上拱类型1的车轨系统振动响应最小。车速300 km/h时,高程偏差为11 mm的道床板上拱类型1引起的车体垂向振动加速度、轮轨作用力,脱轨系数和轮重减载率峰值分别为0.918 m/s2,100.740 k N,0.305和0.255;而类型4依次为2.037 m/s2,185.219 k N,12.503和1.727。上述机理和数据可为道床板上拱伤损评级提供参考。