An approach was proposed to specify the C4ISR capability of domain-specific modeling language.To confine the domain modeling within a standard architecture framework,formally a C4ISR capability meta-ontology was defin...An approach was proposed to specify the C4ISR capability of domain-specific modeling language.To confine the domain modeling within a standard architecture framework,formally a C4ISR capability meta-ontology was defined according to the meta-model of DoD Architecture Framework.The meta-ontology is used for extending UML Profile so that the domain experts can model the C4ISR domains using the C4ISR capability meta-concepts to define a domain-specific modeling language.The domain models can be then checked to guarantee the consistency and completeness through converting the UML models into the Description Logic ontology and making use of inference engine Pellet to verify the ontology.展开更多
Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is hig...Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset.展开更多
基金Project(2007AA01Z126) supported by the National High Technology Research and Development Program of ChinaProject(51306010202) supported by the National Defense Advance Research Program of China
文摘An approach was proposed to specify the C4ISR capability of domain-specific modeling language.To confine the domain modeling within a standard architecture framework,formally a C4ISR capability meta-ontology was defined according to the meta-model of DoD Architecture Framework.The meta-ontology is used for extending UML Profile so that the domain experts can model the C4ISR domains using the C4ISR capability meta-concepts to define a domain-specific modeling language.The domain models can be then checked to guarantee the consistency and completeness through converting the UML models into the Description Logic ontology and making use of inference engine Pellet to verify the ontology.
基金Projects(61170156,60933005)supported by the National Natural Science Foundation of China
文摘Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset.